Report Details

Environmental Noise Assessment - January to March 2013
Filename: 12475 WCM Jan-Mar 2013 Rev0.docx
Job #: J0110411 Folder #: F12475
Revision: 0 (Final)
Date: 3 May 2013

Prepared For

Wilpinjong Coal Mine
Clark Potter, Senior Environmental Advisor
Email: cpotter@peabodyenergy.com, Telephone: 02 6370 2527

Prepared By

Advitech Pty Limited t/a Advitech Environmental
ABN: 29 003 433 458
Alex Knight, Environmental Scientist
Email: alex.knight@advitech.com.au, Telephone: 02 4924 5400
Facsimile: 02 4967 3772, Web: www.advitech.com.au, General Email: mail@advitech.com.au
7 Riverside Drive Mayfield West NSW 2304
PO Box 207 Mayfield NSW 2304

Endorsements

<table>
<thead>
<tr>
<th>Function</th>
<th>Signature</th>
<th>Name and Title</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepared By</td>
<td></td>
<td>Alex Knight Environmental Scientist</td>
<td>3 May 2013</td>
</tr>
<tr>
<td>Checked By</td>
<td></td>
<td>Clayton Sparke Senior Environmental Scientist</td>
<td>3 May 2013</td>
</tr>
<tr>
<td>Authorised for Release By</td>
<td></td>
<td>Rod Bennison Lead Environmental Scientist</td>
<td>3 May 2013</td>
</tr>
</tbody>
</table>

DISCLAIMER - Any representation, statement, opinion or advice expressed or implied in this document is made in good faith, but on the basis that liability (whether by reason of negligence or otherwise) is strictly limited to that expressed on our standard "Conditions of Engagement".

INTELLECTUAL PROPERTY - All Intellectual Property rights in this document remain the property of Advitech Pty Ltd. This document must only be used for the purposes for which it is provided and not otherwise reproduced, copied or distributed without the express consent of Advitech.
TABLE OF CONTENTS

1. INTRODUCTION .. 1
 1.1 Objectives ... 1
 1.2 Environmental Monitoring Program ... 1
 1.3 Mining Operations ... 2

2. REFERENCES ... 3

3. NOISE MONITORING PROGRAM ... 4
 3.1 Continuous Environmental Noise Monitoring .. 4

4. ASSESSMENT OF METEOROLOGICAL DATA .. 5
 4.1 Assessment of Wind-rose Data .. 5
 4.2 Assessment of Atmospheric Stability Data .. 6

5. CONTINUOUS NOISE MONITORING DATA .. 8
 5.1 Data Filtering and Exclusion Rules .. 8
 5.2 Measured L$_{AeqLF,15minute}$ Cumulative Noise Level Results .. 9
 5.3 Assessed L$_{AeqLF, 15minute}$ Exceedence Rate .. 11
 5.4 L$_{Aeq,period}$ Cumulative Noise Results ... 15
 5.5 L$_{A1,1minute}$ Sleep Disturbance Results .. 20

6. DISCUSSION ... 27
1. **INTRODUCTION**

Advitech Pty Limited was engaged by Peabody Energy Australia to collate, analyse and report on continuous environmental noise monitoring in the rural community adjacent to the Wilpinjong Coal Mine (WCM). The objective of the environmental monitoring is to assess the mining noise impacts on adjacent sensitive receivers and determine if these impacts meet consent conditions specified in the Environmental Protection Licence (EPL) and Project Approval.

This report presents continuous noise data monitored at the Conradt (31), Wandoona, Araluen and Central Wollar monitoring locations, for the period 1 January to 31 March, 2013 (the monitoring period).

It should be noted that this report was prepared by Advitech Pty Limited for Peabody Energy Australia ("the customer") in accordance with the scope of work and specific requirements agreed between Advitech and the customer. This report was prepared with background information, terms of reference and assumptions agreed with the customer. The report is not intended for use by any other individual or organisation and as such, Advitech will not accept liability for use of the information contained in this report, other than that which was intended at the time of writing.

1.1 **Objectives**

The objective of this report is to monitor mining noise impacts in the receiving environment and determine if these impacts generally comply with consent conditions, as specified in the Project Approval (05_0021). In accordance with provisions established in Section 5 of the WCM Noise Management Plan (NMP), WCM utilise:

- operator attended monitoring to evaluate compliance with statutory noise criteria; and
- real time unattended monitoring to assist with ongoing management of noise impacts.

Analysis of continuous monitoring data contained in this report is provided to assist with evaluation of the performance of mine noise management practices. Where this analysis identifies noise levels approaching (or exceeding) the noise criteria, supplementary operator attended monitoring would be employed to evaluate compliance with the Project Approval.

On this basis, analysis of continuous unattended noise monitoring data is not presented as an assessment of compliance.

1.2 **Environmental Monitoring Program**

Environmental noise monitoring was undertaken in the area surrounding the WCM using three SentineX continuous monitoring systems. The monitoring systems were located at the following properties as shown in **Figure 1**:

- SentineX 31- Wandoona monitoring location (1 January to 31 March, 2013);
- SentineX 30 - Araluen Lane (1 January to 31 March, 2013); and
- SentineX 33 - Central Wollar (1 January to 31 March, 2013).
1.3 Mining Operations

WCM operations active during the monitoring period are representative of Year 3 operations as described in the WCM Construction, Operation and Transportation Noise and Blasting Impact Assessment (2005) and include:

- extraction of overburden and inter-burden material by dozer pushing or ‘throw blasting’ in Pit 1, Pit 2 and Pit 5, including progressive rehabilitation of mine rock waste emplacements;
- selective mining of coal and haulage to the ROM stockpile;
- 24 hour operation of the Coal Handling and Processing Plant (CHPP); and
- loading of product coal and transport by rail.
2. REFERENCES

The following information was used in the preparation of this report:

3. Protection of the Environment Operations (Noise Control) Regulation 2008 (Schedule 2: Testing Procedures);

4. AS 2706-1984: Numerical Values: Rounding and interpretation of limiting values;

6. Wilpinjong Coal Project Approval (05-0021);

7. Wilpinjong Coal Project (WCM) EPL (12425); and

3. **NOISE MONITORING PROGRAM**

3.1 **Continuous Environmental Noise Monitoring**

Noise monitoring was undertaken using three SentineX continuous monitoring systems in the receiving environment adjacent to WCM operations. The SentineX unit is a remote noise monitoring system which provides near-real time data access via a dedicated website. The noise monitoring system (including a Type 1 sound level meter) records the following parameters:

- 15 minute statistical data (L_{A1}, L_{A10}, and L_{A90});
- $L_{Aeq,15\text{minute}}$ and $L_{Aeq,\text{period}}$ noise levels;
- $L_{Aeq,1\text{minute}}$ in 1/3 octave;
- $L_{Aeq,15\text{minute}}$ in the 20 to 630 Hz range ($L_{Aeq,LF}$);
- digital audio recording 24 hours per day; and
- wind direction, wind speed, temperature, humidity and rainfall.

3.1.1 **Assessment Criteria**

Wilpinjong Coal Mine (WCM) operates in accordance with conditions established in EPL 12425 and Project Approval (05_0021). Noise criteria are designated under these instruments to ensure operations at the mine do not negatively impact on the surrounding environment with regard to noise. **Table 1** details the noise performance criteria for each monitoring location.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Central Wollar</th>
<th>Araluen</th>
<th>Wandoona</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_{Aeq,15\text{minute}}$ Day</td>
<td>36</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$L_{Aeq,15\text{minute}}$ Evening</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$L_{Aeq,15\text{minute}}$ Night</td>
<td>35</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>$L_{Aeq,\text{period}}$ Night</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>$L_{A1,1\text{minute}}$</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
</tbody>
</table>

Acceptable $L_{Aeq,\text{night}}$ noise level for Rural receiver types, as established in Section 2 of the INP.

The EPL states:

- a day is defined as the period from 7 am to 6 pm Monday to Saturday, and 8 am to 6 pm Sundays and public holidays;
- an evening is defined as the period from 6 pm to 10 pm; and
- a night is defined as the period from 10 pm to 7 am Monday to Saturday, and 10 pm to 8 am Sundays and public holidays.

The EPL also stipulates the location of the monitoring equipment. Noise from the WCM is to be measured at the most affected point on or within the residential boundary or at the most affected point within 30 metres (m) of the dwelling where the dwelling is more than 30 m from the boundary.
The EPL and Project Approval state the noise limits identified in Table 1 apply under meteorological conditions of:

- wind speeds of up to 3 m/s at 10 m above ground level; or
- temperature inversion conditions of up to 3°C/100 m and wind speeds of up to 2 m/s at 10 m above ground level.

Direct measurement of vertical temperature gradient is used to monitor and evaluate atmospheric stability and inversion strength at WCM. The temperature lapse rate is calculated on the basis of temperature measurement data from sensors installed on a meteorological tower (at RL+2m and RL+58m) located within the WCM Rail Loop. For the purposes of this assessment, noise level data is also considered invalid if measured during periods of rainfall in accordance with Section 3.4 of the NSW Industrial Noise Policy (INP).

4. **ASSESSMENT OF METEOROLOGICAL DATA**

Meteorological data from the WCM meteorological station was analysed by assessment period (day, evening, and night) for wind speed, wind direction, rainfall and atmospheric stability. A summary of meteorological results is presented in Table 2.

<table>
<thead>
<tr>
<th>Property</th>
<th>Period</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Availability</td>
<td>All</td>
<td>94%</td>
</tr>
<tr>
<td>Adverse Meteorology</td>
<td>All</td>
<td>38%</td>
</tr>
<tr>
<td>Rainfall</td>
<td>All</td>
<td>5%</td>
</tr>
<tr>
<td>Wind, >3ms</td>
<td>Day</td>
<td>51%</td>
</tr>
<tr>
<td></td>
<td>Evening</td>
<td>53%</td>
</tr>
<tr>
<td></td>
<td>Night</td>
<td>25%</td>
</tr>
<tr>
<td>Measured Lapse >+3degC/100m</td>
<td>Night</td>
<td>13%</td>
</tr>
</tbody>
</table>

4.1 **Assessment of Wind-rose Data**

Calm conditions (<0.4 m/s) were experienced for approximately 7% of the monitoring period (all periods) and 16% during the night. Figure 2 indicates winds from the north and east were prevalent for all time periods. Similar conditions were also observed during the night period, as shown in Figure 3.
4.2 Assessment of Atmospheric Stability Data

Analysis of the prevailing atmospheric stability conditions during the January to March period is presented in Figure 4. Atmospheric stability classes for the period January to March, 2013, were evaluated in accordance with the sigma-theta methodology presented in Appendix E of the NSW Industrial Noise Policy. The results indicate moderate (F-class) and strong (G-class) temperature inversions (and associated potential for enhanced noise propagation) were present for approximately 9% of the night period during the monitoring period.
Additional analysis of temperature inversion strength and frequency from direct measurement data was undertaken for the monitoring period and is presented in Figure 5. This analysis demonstrates that temperature inversion conditions (lapse rates > +3°C/100m) were observed at higher frequencies than indicated by application of the sigma theta method.
5. CONTINUOUS NOISE MONITORING DATA

5.1 Data Filtering and Exclusion Rules

5.1.1 Meteorological Exclusions

Monitoring data is compiled as a statistical cumulative frequency distribution histogram to show the percentage of time during the monitoring period that noise limits are exceeded. When filtered to exclude data captured during periods of adverse meteorology, the cumulative distribution curves for $L_{Aeq,LF,15\text{minute}}$ noise levels are compared to the noise limits for that receiver specified in the EPL. Justification for the application of the $L_{Aeq,LF}$ descriptor is provided in Section 5.1.2.

The following rules are applied to exclude continuous monitoring data based on adverse meteorology:

1. 10m wind speed greater than 3 m/s (observed at the WCM meteorological station); or
2. presence of vertical temperature lapse rates exceeding 3°C/100 m (as indicated by G-class Pasquill Gifford atmospheric stability or direct measurement data); or
3. rainfall (observed by the SentineX unit at the receiver location).

Conditions 1 and 2 are applied in accordance with Condition L6.4 of the EPL. The application of Condition 3 is not expressed in the WCM Project Approval or EPL; however, application of this exclusion rule is recommended in Section 3.4 of the INP:

Noise monitoring should not be conducted (or the data should be excluded) when average wind speeds (over 15 minute periods or shorter) at microphone height are greater than 5 m/s, or when rainfall occurs. Exceptions to this rule are allowed, provided the proponent is able to show that the wind induced noise on the microphone, and sound levels due to rain are at least 10 dB below the noise levels (that is, background and/or ambient) under investigation.

5.1.2 Application of the L_{Aeq} and $L_{Aeq,LF}$ Descriptors

The L_{Aeq} descriptor describes the energy equivalent average noise level, and is influenced by extraneous noise sources including livestock and early morning bird activity, and often represents an over-estimate of the contribution from mining operations. The low frequency noise component ($L_{Aeq,LF}$) comprises noise in the 20 Hz to 630 Hz range, and is considered representative of the contribution of measured noise levels associated with mining operations.

5.1.3 Conditional Data Exclusion

The WCM Noise Monitoring Programme (NMP) outlines additional criteria against which extraneous noise impacts may be routinely excluded from the monitoring data. These conditional exclusion rules facilitate a means of determining the impact of non-mining sources on measured noise levels and assessing the contribution of mining noise. The conditional rules are applied to the *as measured* monitoring data and exclude results if:

1. the $L_{Aeq,LF}$ exceeds the L_{A90} by more than 5 dB; or
2. the $L_{Aeq,LF}$ is greater than the L_{A10}; or
3. the $L_{Aeq,LF}$ exceeds the previous $L_{Aeq,LF}$ by more than 7 dB.
Condition 1 can be applied because mine related noise is considered to be continuous and would be expected to influence the L_{A90}. If the L_{AeqLF} is elevated but the L_{A90} remains low, the noise source is considered to be transient and unlikely to be related to mining operations.

Condition 2 can be applied because the L_{A10} is influenced only by short term or intermittent noises such as barking dog or traffic noise. If the L_{AeqLF} exceeds the L_{A10}, it is likely to be a transient source located close to the monitor and unlikely to be related to mining operations.

Condition 3 seeks to remove data associated with transient noise sources that cause a rapid increase followed by a corresponding decrease in noise levels in excess of what could be reasonably attributable to continuous mining noise.

It is important to note that analysis of noise impacts using cumulative frequency distribution curves for filtered monitoring data does not identify the source of noise; only that specified noise levels have been exceeded.

5.2 Measured $L_{AeqLF,15minute}$ Cumulative Noise Level Results

5.2.1 Assessment of Wandoona Monitoring Data

Figure 6 shows the cumulative distribution curves for the $L_{AeqLF,15minute}$ noise levels of the day, evening and night time periods at the Wandoona monitoring location. Application of standard data exclusion rules outlined in Section 5.1 led to the exclusion of 52% of the continuous monitoring data (all periods). Figure 6 indicates that ‘as measured’ $L_{AeqLF,15minute}$ noise levels at the Wandoona monitoring location were above the 35 dB(A) night period criteria for 10% of the monitoring period.

![Noise Level Distribution Analysis for Wandoona L_{AeqLF} Results, January to March 2013](image)

Figure 6: Day, evening and night noise levels at the Wandoona monitoring location
5.2.2 Assessment of Araluen Monitoring Data

Figure 7 shows the cumulative distribution curves for the $L_{Aeq,LF}$ 15-minute noise levels for the day, evening and night time periods at the Araluen monitoring location. Application of standard data exclusion rules outlined in Sections 5.1.1 and 5.1.3 led to the exclusion of 53% of the continuous monitoring data. Following exclusion of data based on standard meteorological and extraneous source impacts, Figure 7 shows that the measured noise levels at the Araluen monitoring location were above the 35dB(A) criteria for 3% of the night during the monitoring period.

![Noise Level Distribution Analysis for Araluen L$A_{eq,LF}$ Results, January to March 2013](image)

Figure 7: Day, evening and night noise levels at the Araluen monitoring location

5.2.3 Assessment of Central Wollar (SentineX33) Monitoring Data

Figure 8 shows the cumulative distribution curves for the $L_{Aeq,LF}$ 15-minute noise levels for the day, evening and night time periods at the Central Wollar monitoring location. Application of standard data exclusion rules outlined in Sections 5.1.1 and 5.1.3 led to the exclusion of 56% of the continuous monitoring data. Following exclusion of data based on standard meteorological and extraneous source impacts, Figure 8 shows that the measured noise levels at the Central Wollar monitoring location were above the 35dB(A) criteria for 13% of the night during the monitoring period.
5.2.4 Summary of L_{Aeq,LF,15minute} Cumulative Noise Level Results

A summary of the cumulative distribution analysis presented in Table 3 shows the measured exceedence rates for the monitoring period. It should be noted that this analysis provides no indication of the source of the measured noise levels.

Table 3: Measured night-time exceedence

<table>
<thead>
<tr>
<th>Location</th>
<th>Noise Criteria dB(A)</th>
<th>Valid Data</th>
<th>Measured Exceedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandoona</td>
<td>$L_{Aeq15minute,night}$ > 35 dB(A)</td>
<td>48%</td>
<td>10%</td>
</tr>
<tr>
<td>Araluen</td>
<td>$L_{Aeq15minute,night}$ > 35 dB(A)</td>
<td>47%</td>
<td>3%</td>
</tr>
<tr>
<td>Central Wollar</td>
<td>$L_{Aeq15minute,night}$ > 35 dB(A)</td>
<td>44%</td>
<td>13%</td>
</tr>
</tbody>
</table>

5.3 Assessed L_{AeqLF, 15minute} Exceedence Rate

Following the assessment of ‘as measured’ noise levels presented in Section 5.2, review of recorded audio was undertaken for each result found to exceed the $L_{Aeq,15minute}$ criteria to determine the source(s) that have contributed to the measured noise level. Results were excluded from the data-set where extraneous (non-mining) sources were found to dominate the noise environment.

The remaining data was re-analysed in accordance with the methods presented in Section 5.2 and cumulative distribution curves representative of mining impacts were produced. The ‘assessed’ exceedence rate is considered representative of the contribution from WCM to the receiving environment.
5.3.1 Assessment of Wandoona Monitoring Data

Figure 9 shows the ‘as measured’ and ‘assessed’ cumulative distribution curves for the $L_{Aeq, 15min}$ noise levels for the night period at the Wandoona monitoring location. The ‘as measured’ curve for the night period is reproduced from Figure 6, and is presented as a comparison to the ‘assessed’ impact.

![Cumulative Distribution Curve for Wandoona - SX31](image)

Figure 9: Assessed night time noise levels at the Araluen monitoring location

Figure 9 indicates that assessed noise levels at the Wandoona monitoring location did not exceed the 35 dB(A) criteria during the night period, following the removal of extraneous (non-mining) sources by audio review. The excluded events were attributed to meteorological influences and the passage of trains on the Sandy Hollow to Gulgong railway.

5.3.2 Assessment of Araluen Monitoring Data

Figure 10 shows the ‘as measured’ and ‘assessed’ cumulative distribution curves for the $L_{Aeq, 15min}$ noise levels for the night period at the Araluen monitoring location. The ‘as measured’ curve for the night period is reproduced from Figure 7, and is presented as a comparison to the ‘assessed’ impact.
Figure 10: Assessed night time noise levels at the Araluen monitoring location

Figure 10 indicates that assessed noise levels at the Araluen monitoring location did not exceed the 35 dB(A) criteria during the night period, following the removal of extraneous (non-mining) sources by audio review. The exceedence events were attributed to extraneous noise sources including insects, gusting wind, domestic noise and the passage of trains on the Sandy Hollow to Gulgong railway.

5.3.3 Assessment of Central Wollar (SentineX33) Monitoring Data

Figure 11 shows the ‘as measured’ and ‘assessed’ cumulative distribution curves for the $L_{Aeq,15min}$ noise levels for the night period at the Central Wollar monitoring location. The ‘as measured’ curve for the night period is reproduced from Figure 8, and is presented as a comparison to the ‘assessed’ impact.
Figure 11: Assessed night time noise levels at the Central Wollar (SentineX33) monitoring location

Figure 11 indicates that assessed noise levels at the Central Wollar monitoring location did not exceed the 35 dB(A) criteria during the night period, following the removal of extraneous (non-mining) sources by audio review. Extraneous noise impacts were attributed to environmental noise sources including road noise, frogs, insects and birds.

5.3.4 Summary of $L_{Aeq,15\text{minute}}$ Cumulative Noise Level Results

A summary of the cumulative distribution analysis presented in Table 4 indicates the assessed exceedence rates for the monitoring period were lower than the measured exceedence rates. The assessed exceedence rate is based on monitoring data free of influence from extraneous noise sources.

<table>
<thead>
<tr>
<th>Location</th>
<th>Noise Criteria dB(A)</th>
<th>Measured Exceedence</th>
<th>Assessed Exceedence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wandoona</td>
<td>$L_{Aeq,15\text{minute,night}} > 35$ dB(A)</td>
<td>10 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Araluen</td>
<td>$L_{Aeq,15\text{minute,night}} > 35$ dB(A)</td>
<td>3 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Central Wollar</td>
<td>$L_{Aeq,15\text{minute,night}} > 35$ dB(A)</td>
<td>13 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>
5.4 \(L_{Aeq,period}\) Cumulative Noise Results

Analysis of 15minute average monitoring results presented in Section 5.3 indicates that measured noise levels at the monitoring location are subject to influence from extraneous (non-mining) noise sources. To assist in identifying noise sources contributing to the amenity of the receiving environment, analysis of average night period (\(L_{Aeq,night}\)) noise levels is undertaken.

The \(L_{Aeq,night}\) monitoring results are calculated on the basis of \(L_{Aeq,15minute}\) data, and are used as a means of demonstrating the relative contribution from mining noise sources to total measured noise levels. As the reported \(L_{AeqLF,period}\) noise level is calculated on the basis of previously assessed \(L_{AeqLF,15minute}\) monitoring results, it is considered representative of the assessed upper limit of potential mine noise impact. To ensure data is fully representative of the noise environment, periods with less than 2 hours of valid data due to meteorological conditions have been excluded from this analysis.

For the purposes of this analysis, the acceptable night period noise level of 40dB(A) (for Rural receiver types, as established in the INP) is adopted to facilitate assessment of potential impacts. To provide feedback relating to those noise sources contributing to measured noise levels above the acceptable level in this receiving environment, review of recorded audio was undertaken where total (\(L_{Aeq}\)) noise levels were observed to exceed 40dB(A).

5.4.1 Assessment of Wandoona Monitoring Data

The data presented in Figure 12 to Figure 14 (Wandoona) is based on measured \(L_{Aeq,15minute}\) noise level results following standard data exclusion as discussed in Section 5.1 and exclusion of data influenced by non-mining sources following audio review as discussed in Section 5.3.

![Figure 12: Night time noise levels at the Wandoona property, January 2013](image_url)
The results presented in Figure 12 to Figure 14 (Wandoona) indicate that night time cumulative $L_{Aeq,LF,period}$ noise levels did not exceed the 40dB(A) acceptable night period noise level during the monitoring period.
5.4.2 Assessment of Araluen Monitoring Data

The data presented in Figure 15 to Figure 17 (Araluen) is based on measured $L_{Aeq,15\text{min}}$ noise level results following standard data exclusion as discussed in Section 5.1, and exclusion of data influenced by non-mining sources following audio review as discussed in Section 5.3.

Figure 15: Night time noise levels at the Araluen monitoring location, January 2013

Figure 16: Night time noise levels at the Araluen monitoring location, February 2013
The results presented in Figure 15 and Figure 17 (Araluen) indicate that night time cumulative $L_{Aeq,\text{F, period}}$ noise levels did not exceed the 40 dB(A) acceptable night period noise level during the monitoring period.

5.4.3 Assessment of Central Wollar (SentineX33) Monitoring Data

The data presented in Figure 18 to Figure 20 (Central Wollar) is based on measured $L_{Aeq,15\text{minute}}$ noise level results following standard data exclusion as discussed in Section 5.1, and exclusion of data influenced by non-mining sources following audio review as discussed in Section 5.3.
Figure 18: Night time noise levels at the Central Wollar monitoring location, January 2013

Figure 19: Night time noise levels at the Central Wollar monitoring location, February 2013
The results presented in Figure 18 to Figure 20 (Central Wollar) indicate that night time cumulative $L_{Aeq,period}$ noise levels did not exceed the 40 dB(A) acceptable night period noise level during the monitoring period.

5.5 $L_{A1,minute}$ Sleep Disturbance Results

The SentineX monitoring unit randomly selects a 15 minute period each night to measure the $L_{A1,minute}$ noise levels. The maximum $L_{A1,minute}$ noise level and the time it was measured is recorded with the corresponding statistical data for the interval.

The $L_{A1,minute}$ noise level is the full spectrum noise level. It should be noted that it is potentially influenced by noise sources other than mining operations, such as barking dogs, livestock and insects. Audio review was carried out to identify active noise sources where the $L_{A1,minute}$ was greater than the sleep disturbance criteria of 45 dB(A). The $L_{A1,minute}$ results were filtered to exclude those measured during periods of adverse meteorology as discussed in Section 5.1.

5.5.1 Assessment of Wandoona Monitoring Data

The results presented in Figure 21 to Figure 23 represent the maximum $L_{A1,minute}$ and corresponding $L_{A90,minute}$ results for the Wandoona monitoring location.
Figure 21: $L_{A1,1\text{minute}}$ noise levels at the Wandoona monitoring location, January 2013

Figure 22: $L_{A1,1\text{minute}}$ noise levels at the Wandoona monitoring location, February 2013
The $L_{A1,minute}$ result was excluded from the assessment on 31 occasions due to adverse meteorology. The $L_{A1,minute}$ noise levels did exceed the 45 dB(A) criteria; however, review of recorded audio indicates that gusting wind, barking dogs, livestock and the passage of trains on the Gulgong to Sandy Hollow railway were the dominant L_{A1} noise sources. Mining noise was not observed to exceed the amenity criteria during the review of recorded audio.

5.5.2 Assessment of Araluen Monitoring Data

The results presented in Figure 24 to Figure 26 represents the maximum $L_{A1,minute}$ and corresponding $L_{A1LF,minute}$ results for the Araluen monitoring location.
Figure 24: $L_{A1,1\text{minute}}$ noise levels at the Araluen monitoring location, January 2013

Figure 25: $L_{A1,1\text{minute}}$ noise levels at the Araluen monitoring location, February 2013
The $L_{A1,1\text{minute}}$ result was excluded from the assessment on 26 occasions due to adverse meteorology. The $L_{A1,1\text{minute}}$ noise levels did exceed the 45dB(A) criteria; however, review of recorded audio indicates that environmental noise sources including gusting wind and the passage of trains on the Gulgong to Sandy Hollow railway were the dominant L_{A1} noise sources. Mining noise was not observed at any time during the audio review.

5.5.3 Assessment of Central Wollar (SentinelX33) Monitoring Data

The results presented in Figure 27 to Figure 29 represents the maximum $L_{A1,1\text{minute}}$ and corresponding $L_{A1LF,1\text{minute}}$ results for the Central Wollar monitoring location during the monitoring period.
Figure 27: $L_{A1,1\text{minute}}$ noise levels at the Central Wollar monitoring location, January 2013

Figure 28: $L_{A1,1\text{minute}}$ noise levels at the Central Wollar monitoring location, February 2013
The $L_{A1,1\text{minute}}$ result was excluded from the assessment on 22 occasions due to adverse meteorology. The $L_{A1,1\text{minute}}$ noise levels did exceed the 45dB(A) criteria; however, review of recorded audio indicates that environmental noise sources including birds, livestock, frogs, insects, local traffic and the passage of trains contribute significantly to the L_{A1} noise environment at this location. Mining noise was not observed at any time during audio review.
6. DISCUSSION

Assessment of noise impacts for the January to March, 2013, monitoring period at the Wandoona, Araluen and Central Wollar monitoring locations indicate that WCM complied with the noise level criteria prescribed in EPL 12425 and Project Approval 05-0021.

The $L_{Aeq,LF,15\text{minute}}$ cumulative distribution curve shows that measured noise levels were below the relevant criteria 97% of the time at the Araluen monitoring location, 87% of the time at Central Wollar, and 90% of the time at the Wandoona monitoring location.

Further assessment of monitoring data presented in Section 5.3 resulted in the exclusion of measurement data not considered to be influenced by mining operations. No exceedence of the $L_{Aeq,15\text{minute}}$ night time criteria due to mining noise was observed at any of the monitoring locations during the assessment period.

Review of $L_{Aeq,\text{period}}$ results indicate that the night time noise environment is dominated by environmental sources such as livestock, frogs, insects, gusting wind and the passage of trains along the Gulgong to sandy hollow railway.

The $L_{A1,1\text{minute}}$ results indicate that animal noise, transportation movements and meteorological influences, dominate the noise environment at all monitoring locations. Mine related noise was not detected during audio review of $L_{A1,1\text{minute}}$ data.