APPENDIX 3B – AIR QUALITY MONITORING

Table 5 Air Quality Impact Assessment Criteria

Pollutant	Averaging Period	Maximum Increase (from the Mine)	^d Criterion
Deposited dust ^c	Annual	^b 2 g/m ² /month	^a 4 g/m ² /month
PM ₁₀	Annual	-	^a 30 μg/m ³
PM ₁₀	24 hour	-	^a 50 μg/m ³
TSP	Annual	-	³90 μg/m³

Notes: $g/m^2/month = grams$ per square metre per month. $\mu g/m^3 = micrograms$ per cubic metre. a Total impact (i.e. incremental increase in concentrations due to the development plus background concentrations due to all other sources); b Incremental impact (i.e. incremental increase in concentrations due to the development on its own); c Deposited dust is to be assessed as insoluble solids as defined by Standards Australia, AS/NZS 3580.10.1:2003: Methods for Sampling and Analysis of Ambient Air - Determination of Particulate Matter - Deposited Matter - Gravimetric Method; and d Excludes extraordinary events such as bushfires, prescribed burning, dust storms, fire incidents or any other activity agreed by the Director-General.

Dust Deposition

Table 6 Summary of Annual Average Dust Deposition

EPL 12425 ID No.	3	4	-	6	-	9	10	11	12	26
Monitoring ID No.	DG4	DG5*	DG7**	DG8	DG10	DG11	DG12	DG13	DG14	DG15
2011 Annual Average Total Insoluble Matter (g/m²/month)	0.90	1.13	1.22	0.94	3.02	1.30	3.73	1.95	1.88	-
2012 Annual Average Total Insoluble Matter (g/m²/month)	1.05	0.73	1.52	1.03	1.19	1.41	6.52	2.38	2.18	-
2013 Annual Average Total Insoluble Matter (g/m²/month)	0.87	0.60	-	1.43	2.04	2.1	3.26	1.94	1.04	0.8
2014 Annual Average Total Insoluble Matter (g/m²/month)	1.68	0.83	-	1.48	3.31	1.28	3.28	2.81	1.43	0.85
2015 Annual Average Total Insoluble Matter (g/m²/month)	0.90	0.80	-	1.10	3.60	1.90	2.90	4.30	1.30	0.70

Notes: Shaded cells indicated internal dust depositional monitoring sites. * The 4 g/m²/month limit only applies to DG5, the limit has been removed from all other dust gauges by the EPA. **At the end of the 2012 reporting period DG7 was relocated from the Mittaville Property to Araluen Road. Araluen Road is situated to the north east of Wollar Village. The new dust gauge is identified as DG15.

Comparison with Data from Project EA Predictions

Table 7 Predicted Dust Deposition Against 2015 Results

Dust Depositional Gauge	Receptor ID*	Year 9 Predicted Annual Av. Dust Deposition (MOD3)	Year 10 Predicted Annual Av. Dust Deposition (MOD6)	2015 Annual Average Dust Deposition Results
DG5	900 & 942 & 150	1.6 g/m ² /month	1.2 - 1.3 g/m ² /month	0.80 g/m ² /month
DG15	146 & 129 & 135	1.6 g/m ² /month	1.2 g/m ² /month	0.70 g/m ² /month

Note: * Nearest private receptor ID to dust depositional gauge.

Total Suspended Particulate (TSP) Matter & PM₁₀

Table 8 Summary of TSP and PM₁₀ Results

	Monitoring Locations [#]							
EPL 12425 ID No.	13	19	20	27	-	25	28	
Monitoring ID No.	HV1	HV3	HV4	HV5	TEOM1^	TEOM3	TEOM4	
			2012 Resi	ults				
PM ₁₀ (μg/m³) recorded range*	2.8 – 21.7	-	12.0 – 21.8	**	3.4 - 60.3	**	**	
PM ₁₀ (μg/m³) annual average	9.1	-	9.7	**	9.7	**	**	
TSP (µg/m³) recorded range*	-	1.9 – 47.0	-	-	=	-	-	
TSP (μg/m³) annual average	-	18.8	-	-	-	-	-	
			2013 Resi	ults				
PM10 (μg/m³) recorded range*	1.2 – 43.7	-	2 – 55.1	1.8 – 49.8	3.0 – 82.5	2.4 – 55.6	0.7 – 68.9	
PM10 (μg/m³) annual average	10.84	-	12.4	15.71	18.5	13.1	16.8	
TSP (µg/m³) recorded range*	-	3.1 – 77.6	-	-	=	-	-	
TSP (μg/m³) annual average	-	27.45	-	-	-	-	-	
			2014 Resi	ults				
PM10 (μg/m³) recorded range*	1.70 - 41.20	-	1.80 – 37.70	2.80 – 47.80		2.65 – 59.12	1.18 – 53.96	
PM10 (μg/m³) annual average	11.15	-	11.95	14.58	17.3	13.2	15.3	
TSP (μg/m³) recorded range*	-	7.20 – 59.0	-	-	=	-	-	
TSP (μg/m³) annual average	-	23.09	-	-	-	-	-	
			2015 Resi	ults				
PM10 (μg/m³) recorded range*	1.1 – 29.3	-	1.9 – 40.0	1.0 – 35.3	-	1.4 – 78.5	0.9 – 77.3	
PM10 (μg/m³) annual average	9.79	-	11.52	11.68	-	11.69	9.35	
TSP (μg/m³) recorded range*	-	3.7 – 68.7	-	-	-	-	-	
TSP (μg/m³) annual average Notes: * Data presented is the	-	22.61	-		-	-	-	

Notes: * Data presented is the range of minimum and maximum 24 hour averages. ^ Data recorded at these sites is not for compliance, but for management purposes only. # Refer to **Figure 7 & 8.**

Comparison with Data from Project EA Predictions

Table 9 Predicted PM₁₀ & TSP Against 2014 Results

PM ₁₀ /TSP Monitor	Receptor ID*	Yr 9 Predicted Annual Average (MOD 3) (μg/m³)		Yr 10 Predicted Annual Average (MOD 6) (μg/m³)		2015 Annual Average PM ₁₀ Results (μg/m³)	
		PM ₁₀	TSP	PM ₁₀	TSP	PM ₁₀	TSP
HV1 TEOM3	900	14	-	14.2	24.0	11.69	9.79
HV5 TEOM4	128 &129	16	-	14.7	24.9	9.35	11.68

Note: * Nearest receptor ID to PM10/TSP monitoring site.

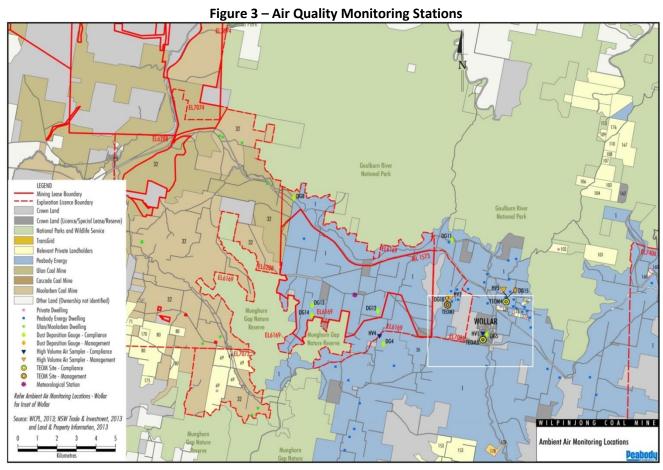


Figure 4 - Air Quality Monitoring Stations (Wollar) DG10 🔷 **○** TEOM4 ⊚ TEOM1 WOLLAR LEGEND Mining Lease Boundary
Exploration Licence Boundary
Crown Land Crown Land (Licence/Special Lease/Reserve) Relevant Private Landholders St Lawrence O'Toole Catholic Church Peabody Energy Other Land (Ownership not identified) Private Dwelling Peabody Energy Dwelling Community
Dust Deposition Gauge - Compliance
Dust Deposition Gauge - Monogement
High Volume Air Sampler - Compliance
High Volume Air Sampler - Management
TEOM Site - Compliance
TEOM Site - Management Source: WCPL, 2013; NSW Trade & Investment, 2013 and Land & Property Information, 2013 WILPINJONG COAL MINE Ambient Air Monitoring Locations -Wollar

3

2015 Ambient Air Quality Monitoring Reports

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED
ACCREDITATION

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st January – 31st January 2015

Report No.: DAT9105

Report issue date: 27th February 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

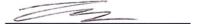
This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9105

Peabody Energy

	Customer Details				
Customer	Peabody Energy Australia				
Contact name	Clark Potter				
Address	Locked Bag 2005, Mudgee 2850 NSW				
Email	cpotter@peabodyenergy.com				
Phone +61 (02) 6370 2527					

Revision History						
Revision	Report ID	Date	Analyst			
0	DAT9105	27/02/2015	Robyn EDWARDS			


Report	by:	

Robyn EDWARDS

15 dwards

Approved Signatory:

Jon ALEXANDER

Report No: DAT9105

Peabody Energy

Table of Contents

	Cust	tomer	Details	2
	Rev	ision H	istory	2
	Tab	le of Co	ontents	3
	List	of Figu	ıres	4
	List	of Tabl	les	4
1.	.0	Execu	ıtive Summary	6
2.	.0	Intro	duction	7
3.	.0	Moni	toring and Data Collection	7
	3.1.	Siti	ng Details	7
	3.2.	Мо	onitored Parameters	9
	3.3.	Dat	ta Collection Methods	. 10
	3	3.3.1.	Compliance with Standards	. 11
	3	3.3.2.	Data Acquisition	. 11
	3.4.	Dat	ta Validation and Reporting	. 11
	3	3.4.1.	Validation	.11
	3	3.4.2.	Reporting	.12
4.	.0	Air Qı	uality Goals	.13
	4.1.	Air	Quality Summary	. 13
5.	.0	Calibr	rations and Maintenance	.14
	5.1.	Uni	its and Uncertainties	. 14
	5.2.	Aut	tomatic Checks	. 15
	5.3.	Ma	intenance	. 15

Report No: DAT9105

Peabody Energy

5.3.1. Cal	libration & Maintenance Summary Tables	16
6.0 Resul	lts	17
6.1. Da	ta Capture	17
6.2. Gra	aphic Representations	18
7.0 Valid	Data Exception Tables	22
8.0 Repo	ort Summary	24
Appendix 1 -	- Definitions & Abbreviations	25
Appendix 2 -	- Explanation of Exception Table	26
List of Fig	ures	
Figure 1: Wi	Ipinjong Mine Monitoring Station Location	8
Figure 2: NO	- 1 hour data	18
Figure 3: NO	₂ - 1 hour data	19
Figure 4: NO	x - 1 hour data	19
Figure 5: SO ₂	₂ - 1 hour data	20
Figure 6: H ₂ S	5 - 1 hour data	20
Figure 7: BTX	(- 1 hour data	21
List of Tab	oles	
Table 1: Wilp	Dinjong Mine monitoring site location	7
Table 2: Para	ameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Met	hods	10
Table 4: Wilp	pinjong Air Quality Goals (NEPM)	13

Report No: DAT9105

Peabody Energy

Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT9105

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for January 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9105

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for January 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT9105

Peabody Energy

A siting audit to assess for compliance with AS/NZS 3580.1.1:2007 has not yet been completed. The audit will be completed at the next suitable maintenance visit.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9105

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H₂S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Report No: DAT9105

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
, , , , , , , , , , , , , , , , , , ,	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1 - 2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H ₂ S	S Ecotech Laboratory In-house method 6.5 Hydrogen sulfide by fluor	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Report No: DAT9105

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of wind data does not comply with AS 3580.14 2011 and is not covered by Ecotech's NATA scope of accreditation due to current unavailability of a suitable wind tunnel calibration certificate.
- Measurement of benzene, toluene and p-Xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.0) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc) in the database for flagging any data as invalid.

Report No: DAT9105

Peabody Energy

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Jan-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. Wollar 5 Minute Averages
- 3. Wollar 1 Hour Averages
- 4. Wollar 24 Hour Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9105

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT9105

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9105

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H ₂ S	N/A	23:50 to 00:05

5.3. Maintenance

Scheduled monthly maintenance was performed on 21/01/2015 in accordance with Ecotech's site specific maintenance checklist.

Report No: DAT9105

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	21/01/2015	Monthly	21/01/2015	Monthly
SO ₂	21/01/2015	Monthly	21/01/2015	Monthly
H ₂ S	21/01/2015	Monthly	21/01/2015	Monthly
втх	21/01/2015	Monthly	21/01/2015	Monthly
Wind Speed	21/01/2015	Monthly	ТВА	2-Yearly
Wind Direction	21/01/2015	Monthly	ТВА	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9105

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for January 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	83.8
SO ₂	83.0
H ₂ S	80.3
BTX	79.8
WS, WD	86.9

Report No: DAT9105

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

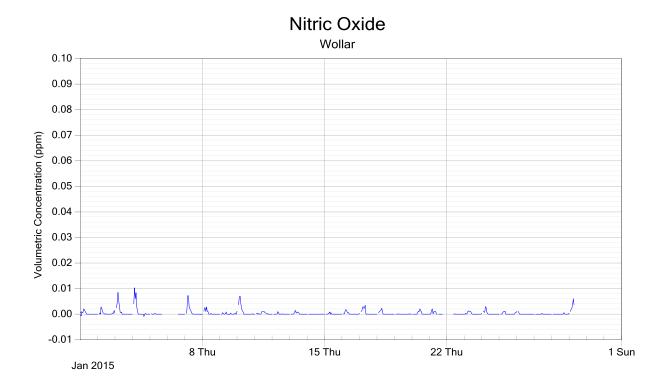
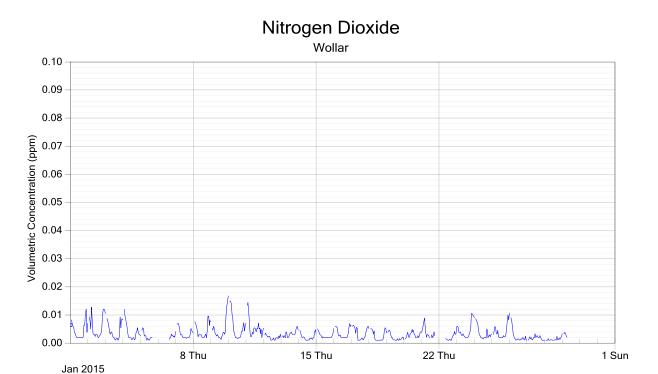



Figure 2: NO - 1 hour data

Report No: DAT9105

Peabody Energy

Figure 3: NO₂ - 1 hour data

Oxides of Nitrogen Wollar 0.10 0.09 0.08 Volumetric Concentration (ppm) 0.07 0.06 0.05 0.04 0.03 0.02 0.01 0.00 8 Thu 22 Thu 1 Sun Jan 2015 Figure 4: NO_X - 1 hour data

Report No: DAT9105

Peabody Energy

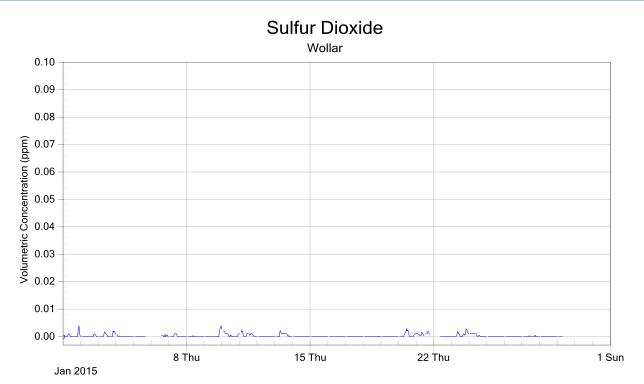


Figure 5: SO₂ - 1 hour data

Hydrogen Sulfide Wollar 0.55 0.50 0.45 0.40 Volumetric Concentration (ppm) 0.35 0.30 0.25 0.20 0.15 0.10 0.05 0.00 8 Thu 15 Thu 22 Thu 1 Sun Jan 2015 Figure 6: H₂S - 1 hour data

Report No: DAT9105

Peabody Energy

Benzene, Toluene and p-Xylene

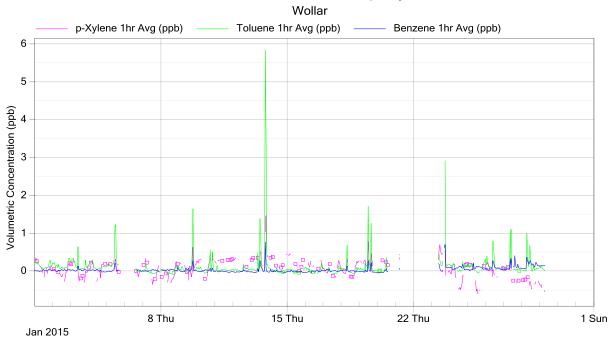


Figure 7: BTX - 1 hour data

Report No: DAT9105

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/01/2015 00:00	05/01/2015 17:20	Static offset of +0.2 ppb applied to correct the baseline, continued from Dec-14	Toluene	RE	18/02/2015
01/01/2015 01:10	29/01/2015 05:20	Intermittent unrealistic negative data	Toluene, <i>p</i> - Xylene	RE	18/02/2015
02/01/2015 01:55	24/01/2015 06:00	Intermittent automatic calibration cycles and subsequent instrument stabilisation	H ₂ S	RE	18/02/2015
05/01/2015 17:25	06/01/2015 15:15	Power interruption and subsequent BTX instrument stabilisation	All parameters	RE	18/02/2015
07/01/2015 22:45	27/01/2015 12:15	Intermittent short power interruptions and subsequent BTX instrument stabilisation	H₂S, BTX, WS and WD	RE	18/02/2015
13/01/2015 13:45	24/01/2015 21:00	Intermittent data transmission errors	All parameters	RE	18/02/2015
20/01/2015 15:35	21/01/2015 05:00	Unknown instrument fault	втх	RE	18/02/2015
21/01/2015 06:55	21/01/2015 19:00	Scheduled monthly maintenance – intermittent data affected	All parameters	RE	18/02/2015
21/01/2015 19:05	22/01/2015 07:30	Power interruption – data unrecoverable	All parameters	RE	18/02/2015
22/01/2015 07:35	22/01/2015 08:50	Power restored and subsequent analyser instruments stabilisation	All parameters	RE	18/02/2015

Report No: DAT9105

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
22/01/2015 07:35	23/01/2015 08:25	Instrument fault	втх	RE	18/02/2015
23/01/2015 08:30	29/01/2015 08:30	Static offset of +0.2 ppb applied to correct the baseline	Toluene	RE	18/02/2015
29/01/2015 08:35	01/02/2015 00:00	Loss of connection – restored on 02/02/2015	All parameters	RE	18/02/2015

Report No: DAT9105

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for the reporting for all measured parameters. This was impacted by intermittent loss of connection during the month, and loss of connection from 29/01/2015 to 02/02/2015.

Continued instrument faults and unrealistic negative data with the BTX analyser resulted in further loss of data.

High H_2S readings were recorded on 19/01/2015 between 21:55 and 23:00 with readings reaching a maximum of 1.659 ppm at 22:15. These data points have been highlighted in red on the corresponding excel data report for Jan-15.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

END O	F REPORT

Report No: DAT9105

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9105

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9105

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED ACCREDITATION

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st February – 28th February 2015

Report No.: DAT9303

Report issue date: 27th March 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9303

Peabody Energy

Customer Details	
Customer Peabody Energy Australia	
Contact name	Clark Potter
Address	Locked Bag 2005, Mudgee 2850 NSW
Email	cpotter@peabodyenergy.com
Phone	+61 (02) 6370 2527

	Re	evision History	n History	
Revision	Report ID	Date	Analyst	
0	DAT9303	27/03/2015	Robyn EDWARDS	

Report by:	Robyn EDWARDS	Edwards
Approved Signatory:	Jon ALEXANDER	

Report No: DAT9303

Peabody Energy

Table of Contents

Customer Details					
Revision History					
Table of Contents					
	List	of Figu	ıres	4	
List of Tables					
1.	0	Execu	utive Summary	6	
2.	0	Intro	duction	7	
3.	0	Moni	toring and Data Collection	7	
	3.1.	Siti	ing Details	7	
	3.2.	Mo	onitored Parameters	9	
	3.3.	Dat	ta Collection Methods	. 10	
	3	.3.1.	Compliance with Standards	. 11	
	3	.3.2.	Data Acquisition	. 11	
	3.4.	Dat	ta Validation and Reporting	. 11	
	3	.4.1.	Validation	. 11	
	3	.4.2.	Reporting	. 12	
4.	0	Air Q	uality Goals	.13	
	4.1.	Air	Quality Summary	. 13	
5.	0	Calib	rations and Maintenance	.14	
	5.1.	Un	its and Uncertainties	. 14	
	5.2.	Aut	tomatic Checks	. 15	
	5.3.	Ma	aintenance	. 15	

Report No: DAT9303

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16	
6.0 Results	17	
6.1. Data Capture	17	
6.2. Graphic Representations	18	
7.0 Valid Data Exception Tables	22	
8.0 Report Summary	24	
Appendix 1 - Definitions & Abbreviations	25	
Appendix 2 - Explanation of Exception Table	26	
List of Figures		
Figure 1: Wilpinjong Mine Monitoring Station Location	8	
Figure 2: NO - 1 hour data	18	
Figure 3: NO ₂ - 1 hour data	19	
Figure 4: NO _X - 1 hour data	19	
Figure 5: SO ₂ - 1 hour data	20	
Figure 6: H ₂ S - 1 hour data	20	
Figure 7: BTX - 1 hour data		
List of Tables		
Table 1: Wilpinjong Mine monitoring site location	7	
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9	
Table 3: Methods	10	
Table 4: Wilpinjong Air Quality Goals (NEPM)	13	

Report No: DAT9303

Peabody Energy

Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT9303

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for February 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9303

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for February 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT9303

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9303

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H₂S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Report No: DAT9303

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1 - 2008 Methods for sampling and analysis of ambien Determination of sulfur dioxide – Direct read method	
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind Direction	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Report No: DAT9303

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of wind data does not comply with AS 3580.14 2011 and is not covered by Ecotech's NATA scope of accreditation due to current unavailability of a suitable wind tunnel calibration certificate.
- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.0) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Report No: DAT9303

Peabody Energy

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Feb-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. Wollar 5 Minute Averages
- 3. Wollar 1 Hour Averages
- 4. Wollar 24 Hour Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9303

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT9303

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9303

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H₂S	01:55 to 03:50 (weekly)	23:50 to 00:05

5.3. Maintenance

Scheduled monthly maintenance was performed on 26/02/2015 in accordance with Ecotech's site specific maintenance checklist. Further calibrations were performed on the BTX analyser on 27/02/2015.

Report No: DAT9303

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	26/02/2015	Monthly	26/02/2015	Monthly
SO ₂	26/02/2015	Monthly	26/02/2015	Monthly
H₂S	26/02/2015	Monthly	26/02/2015	Monthly
втх	27/02/2015	Monthly	27/02/2015	Monthly
Wind Speed	26/02/2015	Monthly	ТВА	2-Yearly
Wind Direction	26/02/2015	Monthly	ТВА	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9303

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for February 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	92.9
SO ₂	92.9
H ₂ S	53.6
Benzene	89.3
Toluene	89.3
<i>p</i> -Xylene	50.0
WS, WD	92.9

Report No: DAT9303

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

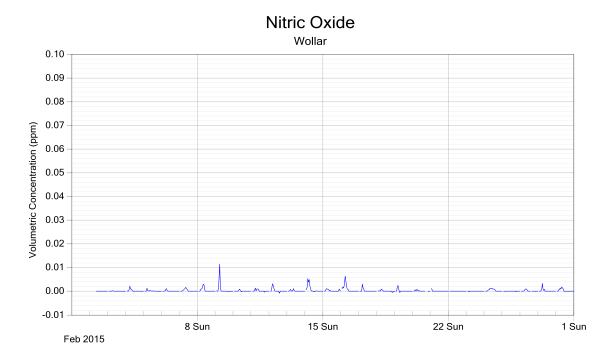


Figure 2: NO - 1 hour data

Report No: DAT9303

Peabody Energy

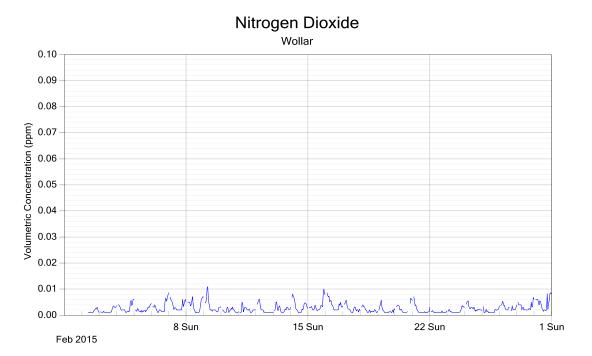


Figure 3: NO₂ - 1 hour data

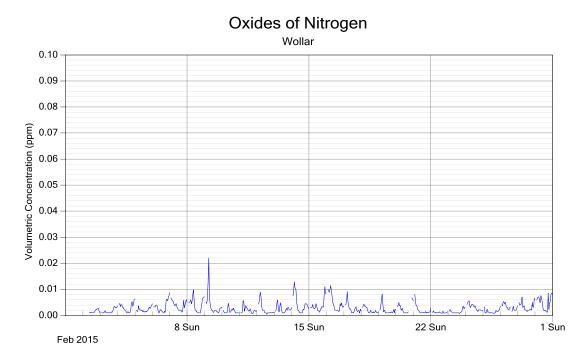


Figure 4: NO_X - 1 hour data

Report No: DAT9303

Peabody Energy

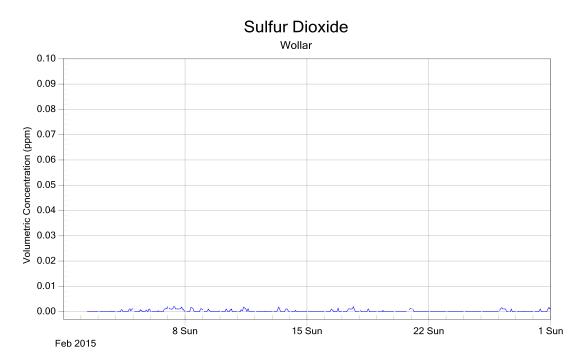


Figure 5: SO₂ - 1 hour data

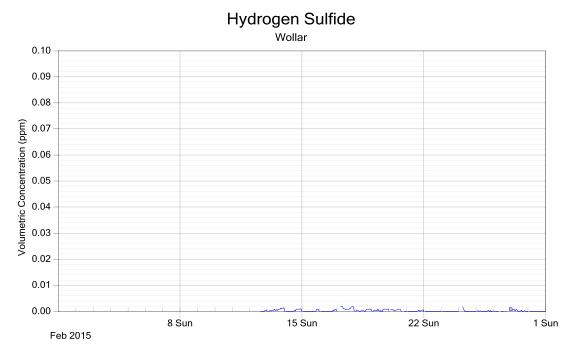


Figure 6: H₂S - 1 hour data

Report No: DAT9303

Peabody Energy

Benzene, Toluene and p-Xylene

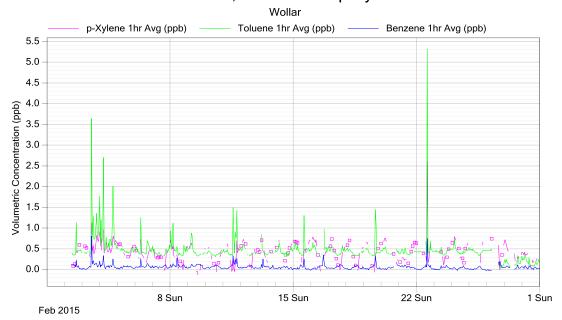


Figure 7: BTX - 1 hour data

Report No: DAT9303

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
29/01/2015 8:35	2/02/2015 8:05	Loss of connection continued from Jan-15	All parameters	RE	N/A
2/02/2015 8:10	2/02/2015 8:45	Connection restored and subsequent SO ₂ and BTX instrument stabilisation	All parameters	RE	25/03/2015
2/02/2015 8:30	12/02/2015 11:15	Instrument out of service due to high zero readings	H ₂ S	RE	25/03/2015
2/02/2015 8:50	26/02/2015 8:15	Static offset of +0.65 ppb applied to correct baseline	Benzene	RE	25/03/2015
2/02/2015 9:00	1/03/2015 0:00	Outliers – intermittent drop outs	Toluene and p-Xylene	RE	26/03/2015
2/02/2015 9:50	26/02/2015 8:15	Static offset of -0.8 ppb applied to correct baseline	<i>p</i> -Xylene	RE	26/03/2015
8/02/2015 1:50	28/02/2015 1:40	Instrument stabilisation following automatic overnight calibration cycle	NO, NO ₂ and NO _X	RE	25/03/2015
12/02/2015 11:25	12/02/2015 14:30	Calibration performed to correct zero readings and subsequent instrument stabilisation	H₂S	RE	25/03/2015
12/02/2015 14:35	26/02/2015 8:30	Static offset of +0.001 applied to correct zero baseline	H₂S	RE	25/03/2015
12/02/2015 14:35	26/02/2015 19:25	Static multiplier of +0.88 applied to correct out of tolerance spans on 17/02/2015 and 24/02/2015	H₂S	RE	26/03/2015

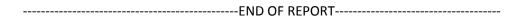
Report No: DAT9303

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
17/02/2015 3:55	24/02/2015 5:15	Intermittent instrument stabilisation following weekly automatic calibration cycle	H₂S	RE	25/03/2015
20/02/2015 18:05	20/02/2015 20:20	Loss of connection	All parameters	RE	N/A
20/02/2015 20:25	20/02/2015 21:20	Connection restored and subsequent instrument stabilisation	All parameters	RE	25/03/2015
26/02/2015 8:20	26/02/2015 16:05	Scheduled monthly maintenance – intermittent data affected throughout the day	All parameters	RE	25/03/2015
26/02/2015 15:50	27/02/2015 9:30	Static offset of 0.4 ppb applied to correct baseline	<i>p</i> -Xylene	RE	26/03/2015
27/02/2015 9:40	27/02/2015 13:20	Unscheduled maintenance – multiple calibrations performed to correct spans	втх	RE	26/03/2015
27/02/2015 13:25	1/03/2015 0:00	Static offset of +3.4 ppb applied to correct baseline	Benzene	RE	25/03/2015
27/02/2015 13:25	1/03/2015 0:00	Static offset of -3.0 ppb applied to correct baseline	Toluene	RE	26/03/2015
27/02/2015 13:25	1/03/2015 0:00	Static offset of -16.7 ppb applied to correct baseline	<i>p</i> -Xylene	RE	26/03/2015

Report No: DAT9303

Peabody Energy


8.0 Report Summary

The data capture for Wollar was below 95% for the reporting for all measured parameters. This was largely impacted by loss of connection at the beginning of the month and again on 20/02/2015.

Continued instrument faults and unrealistic negative data with the BTX analyser resulted in further loss of data, with *p*-Xylene having significant loss of data due to this negative data.

A large amount of data was invalidated for H₂S due to instrument fault resulting in an incorrect zero reading.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

Report No: DAT9303

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9303

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9303

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

Accreditation

No. 14184.

wo

WORLD RECOGNISED
ACCREDITATION

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st March – 31st March 2015

Report No.: DAT9421

Report issue date: 28th April 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9421

Peabody Energy

Customer Details			
Customer Peabody Energy Australia			
Contact name	Clark Potter		
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone	+61 (02) 6370 2527		

Revision History				
Revision	Report ID	Date	Analyst	
0	DAT9421	28/04/2015	Robyn EDWARDS	

Report by:

Robyn EDWARDS

Ddwords

Approved Signatory:

Jon ALEXANDER

Report No: DAT9421

Peabody Energy

Table of Contents

	Cust	omer	Details	2
	Revi	sion H	listory	2
	Tabl	e of Co	ontents	3
	List	of Figu	ıres	4
	List	of Tab	les	4
1.	0	Execu	utive Summary	6
2.	0	Intro	duction	7
3.	0	Moni	itoring and Data Collection	7
	3.1.	Siti	ing Details	7
	3.2.	Мо	onitored Parameters	9
	3.3.	Dat	ta Collection Methods	10
	3	.3.1.	Compliance with Standards	11
	3	.3.2.	Data Acquisition	11
	3.4.	Dat	ta Validation and Reporting	11
	3	.4.1.	Validation	11
	3	.4.2.	Reporting	12
4.	0	Air Q	uality Goals	13
	4.1.	Air	Quality Summary	13
5.	0	Calib	rations and Maintenance	14
	5.1.	Un	its and Uncertainties	14
	5.2.	Aut	tomatic Checks	15
	5.3.	Ma	aintenance	15

Report No: DAT9421

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16
6.0 Results	17
6.1. Data Capture	17
6.2. Graphic Representations	18
7.0 Valid Data Exception Tables	22
8.0 Report Summary	24
Appendix 1 - Definitions & Abbreviations	25
Appendix 2 - Explanation of Exception Table	26
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _X - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21
List of Tables	
Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13

Report No: DAT9421

•

Peabody Energy

Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT9421

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for March 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9421

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for March 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT9421

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9421

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography		
H₂S	Ecotech EC9852 - fluorescence		
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence		
SO ₂	Ecotech EC9850 – fluorescence		
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic		
Wind Direction (10m)	Vaisala WS425 – ultrasonic		

Report No: DAT9421

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1 - 2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography	
Vector Wind Speed	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Report No: DAT9421

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of wind data does not comply with AS 3580.14 2011 and is not covered by Ecotech's NATA scope of accreditation due to current unavailability of a suitable wind tunnel calibration certificate.
- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.0) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Report No: DAT9421

Peabody Energy

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Mar-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. Wollar 5 Minute Averages
- 3. Wollar 1 Hour Averages
- 4. Wollar 24 Hour Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9421

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT9421

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppb	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppb	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppb	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppb	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9421

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)	
NO, NO ₂ , NO _x	01:00 to 01:45	N/A	
SO ₂	01:00 to 01:40	23:50 to 00:00	
H₂S	01:55 to 03:50 (weekly)	23:50 to 00:05	

5.3. Maintenance

Scheduled monthly maintenance was performed on 26/03/2015 in accordance with Ecotech's site specific maintenance checklist. The post-calibration check on the BTX analyser was performed on 27/03/2015.

Report No: DAT9421

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	26/03/2015	Monthly	26/03/2015	Monthly
SO ₂	26/03/2015	Monthly	26/03/2015	Monthly
H₂S	26/03/2015	Monthly	26/03/2015	Monthly
ВТХ	27/03/2015	Monthly	27/03/2015	Monthly
Wind Speed	26/03/2015	Monthly	ТВА	2-Yearly
Wind Direction	26/03/2015	Monthly	ТВА	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9421

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for March 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	100.0
SO ₂	96.8
H₂S	96.8
Benzene	93.5
Toluene	93.5
<i>p</i> -Xylene	77.4
WS, WD	100.0

Report No: DAT9421

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

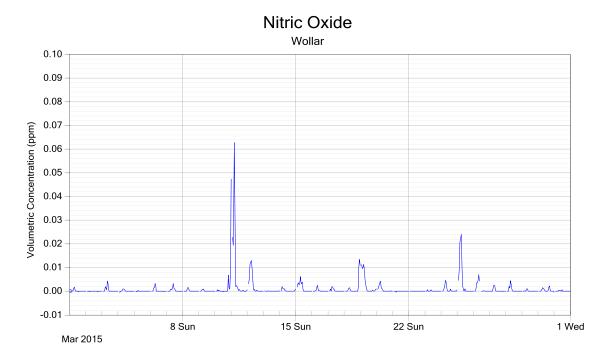


Figure 2: NO - 1 hour data

Report No: DAT9421

Peabody Energy

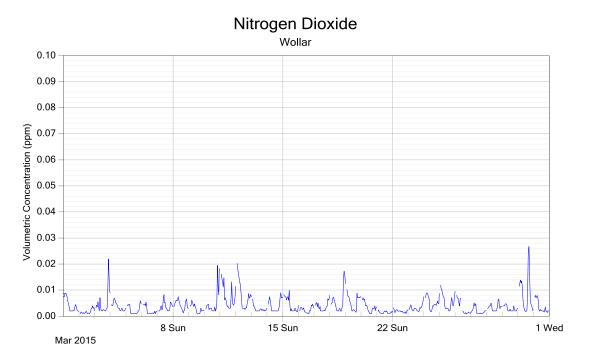


Figure 3: NO₂ - 1 hour data

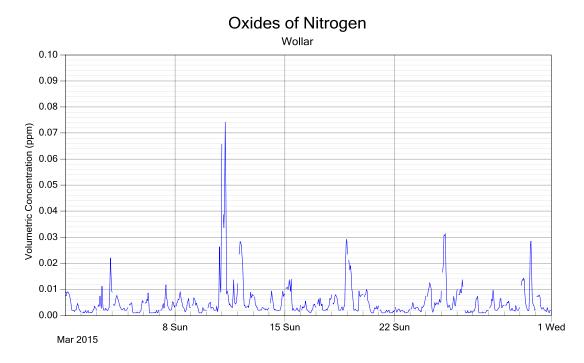


Figure 4: NO_X - 1 hour data

Report No: DAT9421

Peabody Energy

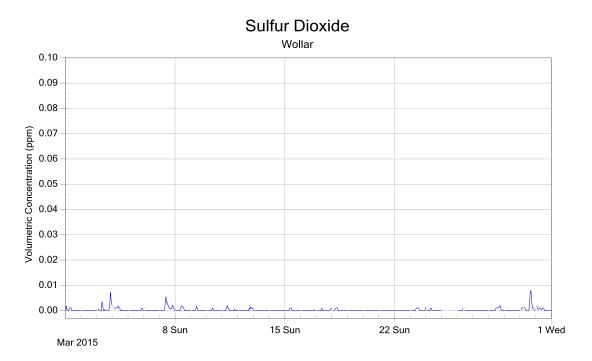


Figure 5: SO₂ - 1 hour data

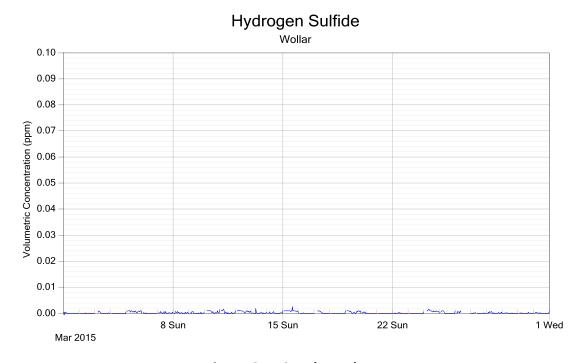


Figure 6: H₂S - 1 hour data

Report No: DAT9421

Peabody Energy

Benzene, Toluene and p-Xylene

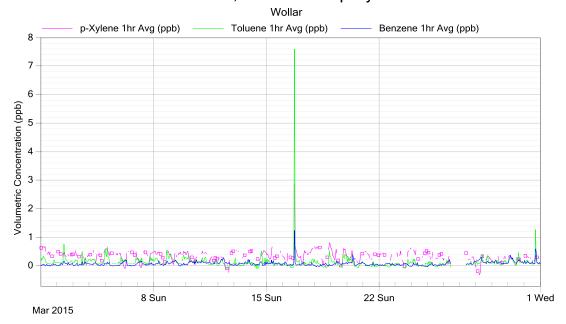


Figure 7: BTX - 1 hour data

Report No: DAT9421

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
27/02/2015 13:10	26/03/2015 00:00	Static offset of -3.0 ppb applied to correct baseline	Toluene	RE	26/03/2015
27/02/2015 13:10	11/03/2015 21:10	Static offset of 3.4 ppb applied to correct baseline	Benzene	RE	25/03/2015
28/02/2015 23:55	12/03/2015 19:40	Intermittent unknown instrument fault	<i>p</i> -Xylene	RE	26/03/2015
01/03/2015 01:00	11/03/2015 21:10	Static offset of -16.5 ppb applied to correct baseline	<i>p</i> -Xylene	RE	25/03/2015
01/03/2015 02:40	31/03/2015 23:50	Outliers – intermittent drop outs	Toluene and p-Xylene	RE	01/04/2015
02/03/2015 07: 15	02/03/2015 07:15	Wind speed spike	WS and WD	RE	27/04/2015
03/03/2015 03:45	24/03/2015 04:15	Intermittent instrument stabilisation following weekly automatic calibration cycle	H₂S	RE	27/03/2015
04/03/2015 21:40	04/03/2015 21:40	Data transmission error	H ₂ S	RE	N/A
10/03/2015 16:55	10/03/2015 17:20	Intermittent unrealistic negative data	NO, NO ₂ and NO _X	RE	28/04/2015
11/03/2015 21:15	11/03/2015 22:00	Short power interruption and subsequent instrument stabilisation	H₂S, BTX, WS and WD	RE	25/03/2015

Report No: DAT9421

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
11/03/2015 21:50	26/03/2015 12:00	Static offset of +3.3 ppb applied to correct baseline	Benzene	RE	26/03/2015
11/03/2015 22:05	26/03/2015 12:00	Static offset of -16.0 ppb applied to correct baseline	<i>p</i> -Xylene	RE	26/03/2015
16/03/2015 07:50	16/03/2015 08:00	Instrument fault – possibly NO _x present in sample line	H ₂ S	RE	16/04/2015
20/03/2015 01:40	20/03/2015 01:45	Instrument stabilisation following automatic overnight calibration cycle	SO ₂	RE	16/04/2015
25/03/2015 01:40	26/03/2015 00:55	Instrument fault – remained in calibration mode following overnight cycle	SO ₂	RE	N/A
26/03/2015 10:30	26/03/2015 15:50	Scheduled monthly maintenance – intermittent data affected	All parameters	RE	27/03/2015
26/03/2015 12:05	27/03/2015 09:25	Maintenance – performed zero checks	втх	RE	N/A
26/03/2015 13:55	26/03/2015 23:40	Maintenance – performed zero check	H₂S	RE	27/03/2015

Report No: DAT9421

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for the reporting for all measured parameters with the exception of Benzene, Toluene and p-Xylene.

- Benzene and Toluene had a data capture of 93.5% and both parameters were affected by zero checks being performed as part of scheduled maintenance.
- *P*-Xylene had a data capture of 77.4% and was impacted by a zero check as part of scheduled maintenance, and outliers.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

END OF REPORT	-

Report No: DAT9421

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9421

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9421

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

No. 14184.

Accreditation

WORLD RECOGNISED
ACCREDITATION

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st April – 30th April 2015

Report No.: DAT9490

Report issue date: 28th May 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9490

Peabody Energy

Customer Details		
Customer	Peabody Energy Australia	
Contact name	Clark Potter	
Address	Locked Bag 2005, Mudgee 2850 NSW	
Email	cpotter@peabodyenergy.com	
Phone +61 (02) 6370 2527		

Revision History				
Revision	Report ID	Date	Analyst	
0	DAT9490	28/05/2015	Robyn EDWARDS	

Report by:

Robyn EDWARDS

Approved Signatory: Jon ALEXANDER

Report No: DAT9490

Peabody Energy

Table of Contents

	Cust	omer	Details	2
	Revi	sion H	listory	2
	Tabl	e of Co	ontents	3
	List	of Figu	ıres	4
	List	of Tab	les	4
1.	0	Execu	utive Summary	6
2.	0	Intro	duction	7
3.	0	Moni	itoring and Data Collection	7
	3.1.	Siti	ing Details	7
	3.2.	Мс	onitored Parameters	9
	3.3.	Dat	ta Collection Methods	10
	3	.3.1.	Compliance with Standards	11
	3	.3.2.	Data Acquisition	11
	3.4.	Dat	ta Validation and Reporting	11
	3	.4.1.	Validation	11
	3	.4.2.	Reporting	12
4.	0	Air Q	uality Goals	13
	4.1.	Air	Quality Summary	13
5.	0	Calib	rations and Maintenance	14
	5.1.	Un	its and Uncertainties	14
	5.2.	Aut	tomatic Checks	15
	5.3.	Ma	aintenance	15

Report No: DAT9490

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16
6.0 Results	17
6.1. Data Capture	17
6.2. Graphic Representations	18
7.0 Valid Data Exception Tables	22
8.0 Report Summary	23
Appendix 1 - Definitions & Abbreviations	24
Appendix 2 - Explanation of Exception Table	25
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21
List of Tables	
Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13

Report No: DAT9490

Peabody Energy

Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT9490

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for April 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9490

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for April 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT9490

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9490

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H₂S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Report No: DAT9490

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1 - 2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography	
Vector Wind Speed	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Report No: DAT9490

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of wind data does not comply with AS 3580.14 2011 and is not covered by Ecotech's NATA scope of accreditation due to current unavailability of a suitable wind tunnel calibration certificate.
- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.0) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Report No: DAT9490

Peabody Energy

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Apr-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9490

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT9490

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9490

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H₂S	01:55 to 03:50 (weekly)	23:50 to 00:05

5.3. Maintenance

A maintenance visit was performed on 30/04/2015 and calibrations performed on all analysers prior to the removal of the existing gas bottle. Scheduled yearly maintenance was then performed following the installation of the new gas bottle.

Yearly maintenance was continued on 01/05/2015 and details will be included in the next report.

Report No: DAT9490

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	30/04/2015	Yearly	30/04/2015	Monthly
SO ₂	30/04/2015	Yearly	30/04/2015	Monthly
H₂S	30/04/2015	Exit calibration	30/04/2015	Monthly
ВТХ	27/03/2015	Monthly	27/03/2015	Monthly
Wind Speed	26/03/2015	Monthly	ТВА	2-Yearly
Wind Direction	26/03/2015	Monthly	ТВА	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9490

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for April 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	91.1
SO ₂	89.4
H₂S	89.4
Benzene	94.9
Toluene	86.9
<i>p</i> -Xylene	62.5
WS, WD	96.1

Report No: DAT9490

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

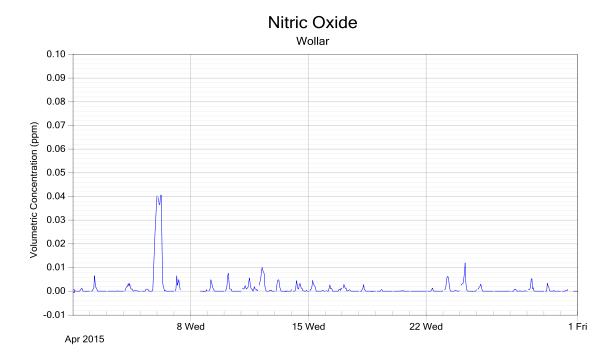


Figure 2: NO - 1 hour data

Report No: DAT9490

Peabody Energy

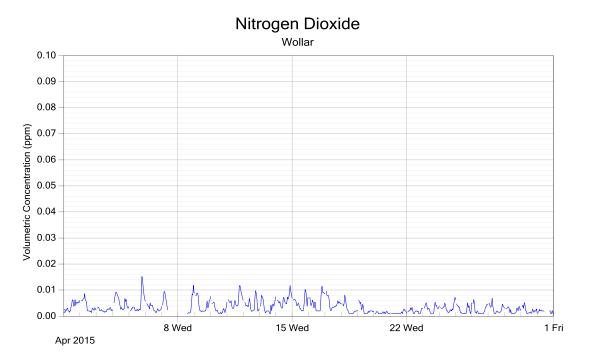


Figure 3: NO₂ - 1 hour data

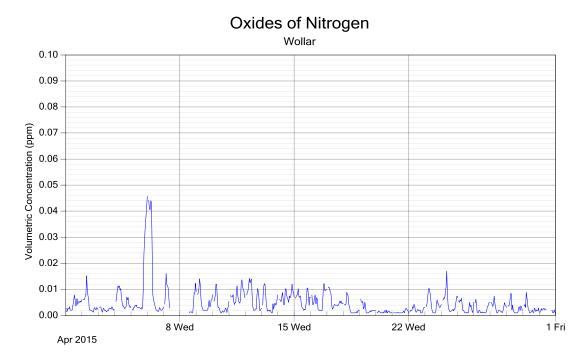


Figure 4: NO_X - 1 hour data

Report No: DAT9490

Peabody Energy

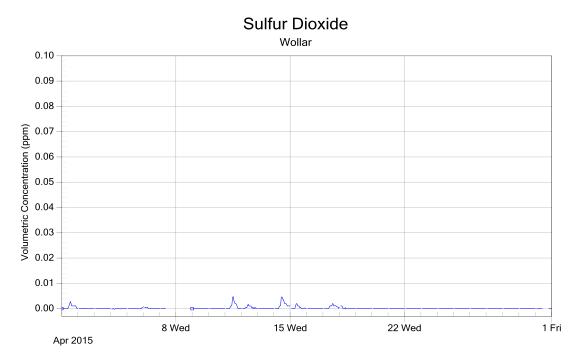


Figure 5: SO₂ - 1 hour data

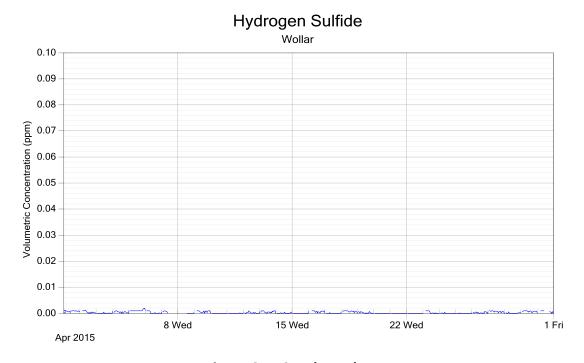


Figure 6: H₂S - 1 hour data

Report No: DAT9490

Peabody Energy

Benzene, Toluene and p-Xylene

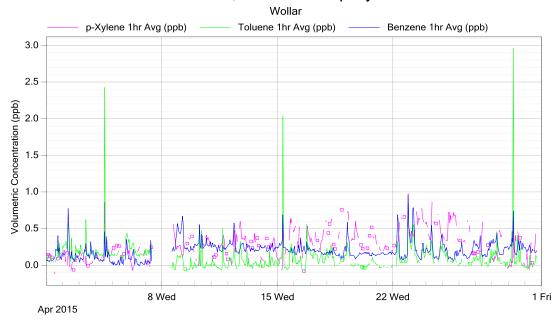


Figure 7: BTX - 1 hour data

Report No: DAT9490

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/04/2015 00:20	30/04/2015 17:50	Outliers – intermittent drop outs p-Xyle		RE	19/05/2015
02/04/2015 03:45	30/04/2015 04:15	Instrument stabilisation following weekly automatic calibration cycle	H₂S	RE	19/05/2015
05/04/2015 17:55	05/04/2015 18:25	Short power interruption and subsequent instrument stabilisation	втх	RE	19/05/2015
07/04/2015 10:20	18/04/2015 10:10	Intermittent wind speed spikes	WS and WD	RE	19/05/2015
07/04/2015 10:25	09/04/2015 00:05	Power interruption and subsequent gas instrument stabilisation upon restart. Stabilisation periods differ between instruments All parameters		RE	19/05/2015
13/04/2015 01:40	25/04/2015 01:45	Intermittent instrument stabilisation following automatic overnight calibration cycle NO, NO ₂ and NO _x		RE	19/05/2015
30/04/2015 11:40	30/04/2015 19:15	Maintenance – installation of new gas bottle. Intermittent data affected	NO, NO ₂ , NO _x , SO ₂ and H ₂ S	RE	19/05/2015
30/04/2015 12:55	30/04/2015 13:20	Data affected by gas instrument BTX, WS a maintenance WD		RE	19/05/2015
30/04/2015 17:55	30/04/2015 23:55	Instrument in "out of service" mode in preparation for maintenance on BTX 01/05/2015		RE	19/05/2015

Report No: DAT9490

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for the reporting for all measured parameters. This was largely due to a power interruption between 07/04/2015 and 09/04/2015. In addition;

- Benzene and Toluene had a data capture of 93.5% and both parameters were affected by zero checks being performed as part of scheduled maintenance.
- *P*-Xylene had a data capture of 77.4% and was impacted by a zero check as part of scheduled maintenance, and outliers.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

END OF REPORT
LIND OF INLIGHT

Report No: DAT9490

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9490

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9490

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st May – 31st May 2015

Report No.: DAT9621

Report issue date: 29th June 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9621

Peabody Energy

Customer Details		
Customer	Peabody Energy Australia	
Contact name	Clark Potter	
Address	Locked Bag 2005, Mudgee 2850 NSW	
Email	cpotter@peabodyenergy.com	
Phone	+61 (02) 6370 2527	

Revision History				
Revision	Report ID		Analyst	
0	DAT9621	29/06/2015	Robyn EDWARDS	

Report by:

Robyn EDWARDS

15 dwards

Approved Signatory:

Amanda ELLIOTT

Al-Ellit

Report No: DAT9621

Peabody Energy

Table of Contents

(Cust	omer I	Details	2
ſ	Revi	sion H	istory	2
	Tabl	e of Co	ontents	3
ı	List(of Figu	res	4
ı	List(of Tabl	les	4
1.0)	Execu	tive Summary	6
2.0)	Introd	duction	7
3.0)	Monit	toring and Data Collection	7
3	3.1.	Siti	ng Details	7
3	3.2.	Мо	nitored Parameters	9
3	3.3.	Dat	ta Collection Methods	. 10
	3	.3.1.	Compliance with Standards	. 11
	3	.3.2.	Data Acquisition	. 11
3	3.4.	Dat	ta Validation and Reporting	. 11
	3	.4.1.	Validation	. 11
	3	.4.2.	Reporting	. 12
4.0)	Air Qu	uality Goals	. 13
4	4.1.	Air	Quality Summary	. 13
5.0)	Calibr	rations and Maintenance	. 14
į	5.1.	Uni	its and Uncertainties	. 14
į	5.2.	Aut	tomatic Checks	. 15
į	5.3.	Ma	intenance	. 15

Report No: DAT9621

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16
6.0 Results	17
6.1. Data Capture	17
6.2. Graphic Representations	18
7.0 Valid Data Exception Tables	22
8.0 Report Summary	24
Appendix 1 - Definitions & Abbreviations	25
Appendix 2 - Explanation of Exception Table	26
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21
List of Tables	
Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13

Report No: DAT9621

Peabody Energy

Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT9621

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for May 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9621

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ May 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT9621

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9621

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H₂S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Report No: DAT9621

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1 - 2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H ₂ S Ecotech Laboratory Manual		In-house method 6.5 Hydrogen sulfide by fluorescence
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Report No: DAT9621

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of wind data does not comply with AS 3580.14 2011 and is not covered by Ecotech's NATA scope of accreditation due to current unavailability of a suitable wind tunnel calibration certificate.
- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Report No: DAT9621

Peabody Energy

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report May-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9621

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT9621

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H ₂ S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9621

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H₂S	01:55 to 03:50 (weekly)	23:50 to 00:05

5.3. Maintenance

Yearly maintenance was performed on 30/04/2015 and completed on 01/05/2015. Data was checked remotely on 02/05/2015 before the Ecotech technician returned to the Sydney offices.

Report No: DAT9621

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	30/04/2015	Yearly	30/04/2015	Monthly
SO ₂	30/04/2015	Yearly	30/04/2015	Monthly
H ₂ S	01/05/2015	Yearly	01/05/2015	Monthly
втх	01/05/2015	3-monthly	01/05/2015	Monthly
Wind Speed	01/05/2015	3-monthly	ТВА	2-Yearly
Wind Direction	01/05/2015	3-monthly	ТВА	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9621

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ May 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	97.2
SO ₂	94.7
H₂S	92.6
Benzene	97.5
Toluene	93.2
<i>p</i> -Xylene	78.2
WS, WD	99.9

Report No: DAT9621

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

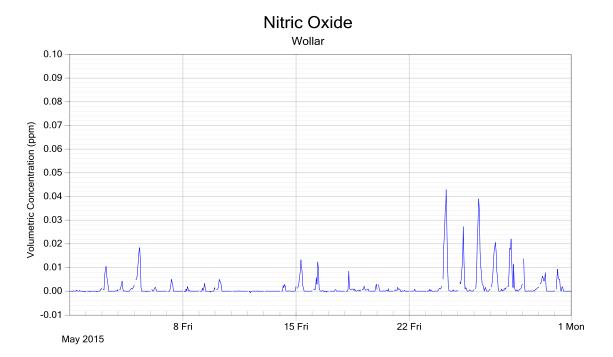


Figure 2: NO - 1 hour data

Report No: DAT9621

Peabody Energy

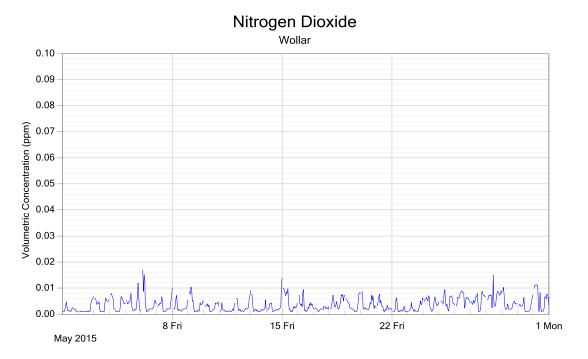


Figure 3: NO₂ - 1 hour data

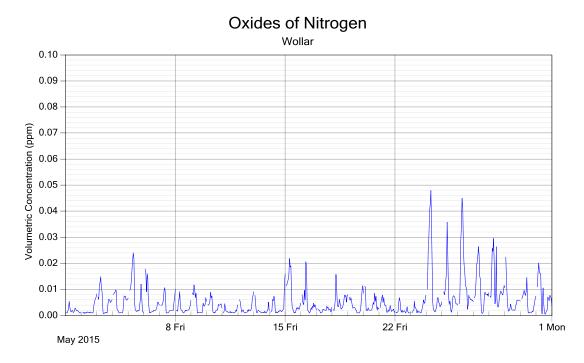


Figure 4: NO_X - 1 hour data

Report No: DAT9621

Peabody Energy

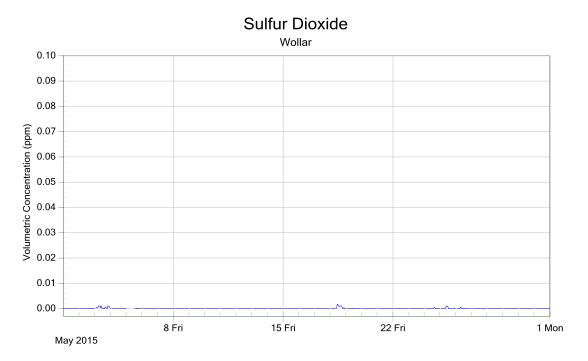


Figure 5: SO₂ - 1 hour data

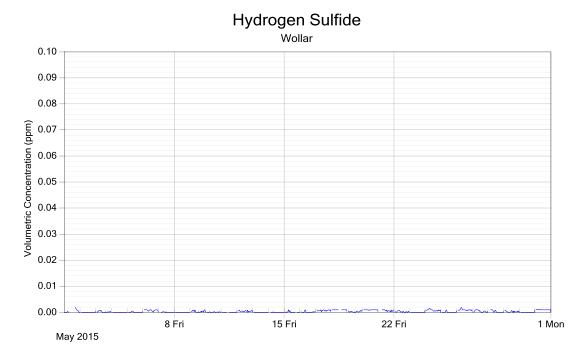


Figure 6: H₂S - 1 hour data

Report No: DAT9621

Peabody Energy

Benzene, Toluene and p-Xylene

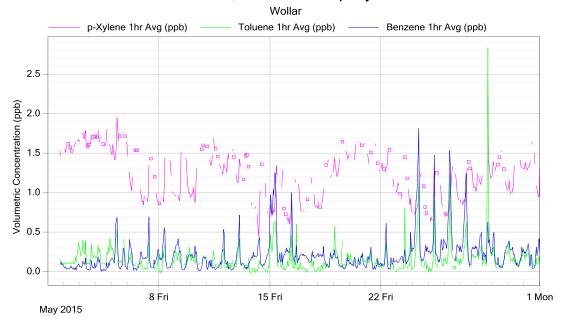


Figure 7: BTX - 1 hour data

Report No: DAT9621

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason Change Details		User Name	Change Date
01/05/2015 00:00	01/05/2015 08:05	Instrument in "out of service" mode in preparation for maintenance (continued from Apr-15)	H₂S and BTX	RE	19/05/2015
01/05/2015 07:40	05/05/2015 00:55	Linear multiplier applied to correct out of tolerance spans where A = 0.87 and B = 0.93	NO, NO ₂ and NO _x	RE	26/05/2015
01/05/2015 08:10	01/05/2015 17:45	Scheduled yearly maintenance and subsequent instrument stabilisation	ВТХ	RE	19/05/2015
01/05/2015 17:50	04/06/2015 14:05	Static offset of 1.34 ppb applied to correct baseline	<i>p</i> -Xylene	RE	29/06/2015
01/05/2015 20:15	31/05/2015 18:50	Outliers – intermittent drop outs	Toluene and p-Xylene	RE	25/06/2015
03/05/2015 07:20	16/05/2015 07:20	Intermittent wind speed spikes	WS and WD	RE	25/06/2015
05/05/2015 01:40	05/05/2015 12:55	Instrument fault – remained in calibration mode following overnight calibration cycle	SO ₂	RE	05/05/2015
10/05/2015 01:40	25/05/2015 02:25	Intermittent instrument stabilisation following automatic overnight calibration cycle	NO, NO ₂ and NO _x	RE	19/05/2015
11/05/2015 09:35	18/05/2015 15:40	Intermittent additional automatic calibration cycles	H₂S	RE	18/05/2015

Report No: DAT9621

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
21/05/2015 03:45	21/05/2015 04:30	Instrument stabilisation following automatic calibration cycle	H₂S	RE	25/06/2015
26/05/2015 13:50	26/05/2015 14:20	Short power interruption and subsequent instrument stabilisation	ВТХ	RE	25/06/2015

Report No: DAT9621

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters with the exception of the following;

- SO_2 had a data capture of 94.7% and was impacted by an instrument fault on 05/05/2015.
- H₂S had a data capture of 92.6% and was impacted by intermittent data transmission errors.
- *p*-Xylene had a data capture of 78.2% and was impacted by a zero check as part of scheduled maintenance, and outliers.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

FND OF RFPORT
END OF REFORM

Report No: DAT9621

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9621

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9621

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st June – 30th June 2015

Report No.: DAT9737

Report issue date: 28th July 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email ecotech@ecotech.com WEB www.ecotech.com

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9737

Peabody Energy

Customer Details		
Customer	Peabody Energy Australia	
Contact name	Clark Potter	
Address	Locked Bag 2005, Mudgee 2850 NSW	
Email	cpotter@peabodyenergy.com	
Phone	+61 (02) 6370 2527	

Revision History			
Revision	Report ID	Date	Analyst
0	DAT9737	28/07/2015	Robyn EDWARDS

Report by:

Robyn EDWARDS

REdwards

Approved Signatory:

Jon ALEXANDER

Report No: DAT9737

Peabody Energy

Table of Contents

	Custo	omer Details	2
	Revis	ion History	2
	Table	e of Contents	3
	List o	f Figures	4
	List o	f Tables	5
1.	.0 I	Executive Summary	6
2.	.0 I	Introduction	7
3.	.0 0.	Monitoring and Data Collection	7
	3.1.	Siting Details	7
	3.2.	Monitored Parameters	9
	3.3.	Data Collection Methods	. 10
	3.3	3.1. Compliance with Standards	. 11
	3.3	3.2. Data Acquisition	. 11
	3.4.	Data Validation and Reporting	. 11
	3.4	4.1. Validation	. 11
	3.4	4.2. Reporting	. 12
4.	.0 A	Air Quality Goals	. 13
	4.1.	Air Quality Summary	. 13
5.	.0 (Calibrations and Maintenance	. 14
	5.1.	Units and Uncertainties	. 14
	5.2.	Automatic Checks	. 15
	5.3.	Maintenance	. 15

Report No: DAT9737

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16
6.0 Results	17
6.1. Data Capture	17
6.2. Graphic Representations	18
7.0 Valid Data Exception Tables	22
8.0 Report Summary	23
Appendix 1 - Definitions & Abbreviations	24
Appendix 2 - Explanation of Exception Table	25
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT9737

Peabody Energy

List of Tables

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	<u>S</u>
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT9737

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for June 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9737

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 30^{th}$ June 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT9737

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9737

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography		
H₂S	Ecotech EC9852 - fluorescence		
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence		
SO ₂	Ecotech EC9850 – fluorescence		
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic		
Wind Direction (10m)	Vaisala WS425 – ultrasonic		

Report No: DAT9737

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1 - 2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Report No: DAT9737

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of wind data does not comply with AS 3580.14 2011 and is not covered by Ecotech's NATA scope of accreditation due to current unavailability of a suitable wind tunnel calibration certificate.
- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Report No: DAT9737

Peabody Energy

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Jun-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5min Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9737

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	r 30 ppb None		None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT9737

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01 0 ppb to	
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater 0 ppb t K factor of 2	
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9737

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO_2 , NO_x , SO_2 , and H_2S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H₂S	01:55 to 03:50 (weekly)	23:50 to 00:05

5.3. Maintenance

Scheduled monthly maintenance was carried out on 04/06/2015 and 05/06/2015.

Yearly maintenance for the NO_X analyser performed in May-15, was concluded on 04/06/2015.

Report No: DAT9737

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	04/06/2015	Yearly	04/06/215	Monthly
SO ₂	04/06/2015	Monthly	04/06/2015	Monthly
H₂S	04/06/2015	Monthly	04/06/2015	Monthly
втх	05/06/2015	Monthly	05/06/2015	Monthly
Wind Speed	05/06/2015	6-monthly	ТВА	2-Yearly
Wind Direction	05/06/2015	6-monthly	ТВА	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9737

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: Data capture = (Reported air quality data / Total data) x 100% Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 30^{th}$ June 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	92.8
SO ₂	95.0
H₂S	92.3
Benzene	95.4
Toluene	94.4
<i>p</i> -Xylene	84.7
WS, WD	99.2

Report No: DAT9737

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

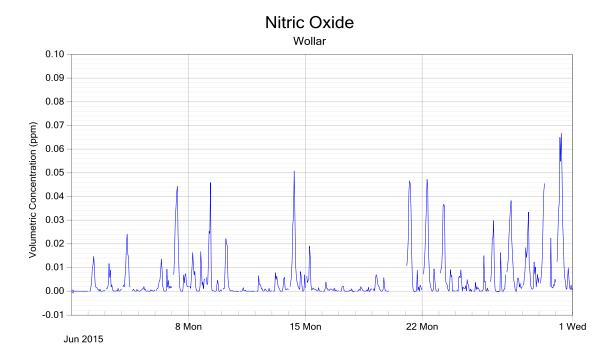


Figure 2: NO - 1 hour data

Report No: DAT9737

Peabody Energy

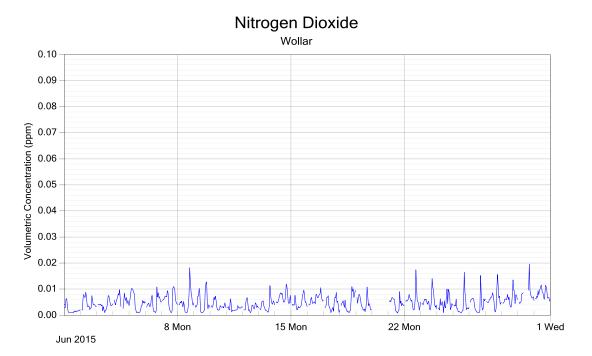


Figure 3: NO₂ - 1 hour data

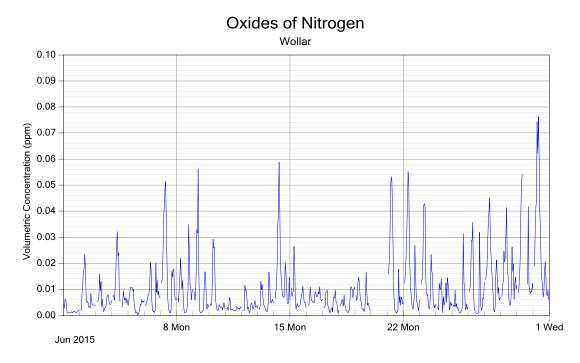


Figure 4: NO_X - 1 hour data

Report No: DAT9737

Peabody Energy

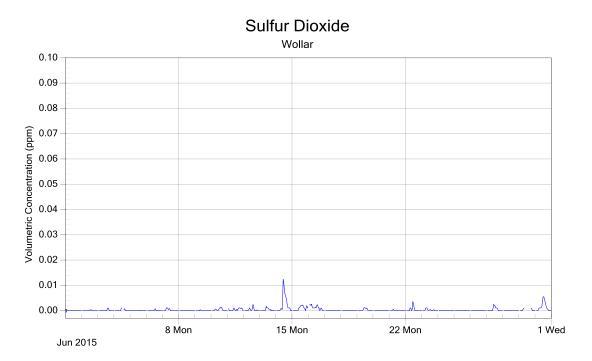


Figure 5: SO₂ - 1 hour data

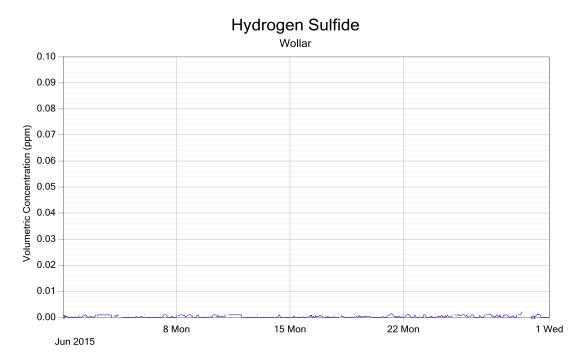


Figure 6: H₂S - 1 hour data

Report No: DAT9737

Peabody Energy

Benzene, Toluene and p-Xylene

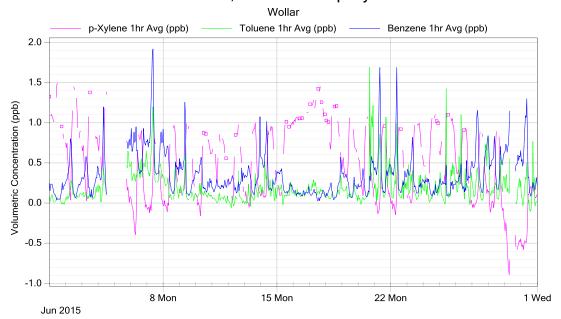


Figure 7: BTX - 1 hour data

Report No: DAT9737

Peabody Energy

7.0 Valid Data Exception Tables

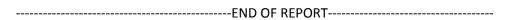
The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/06/2015 00:00	04/06/2015 14:05	Static offset of 1.34 ppb applied to correct baseline (continued from May-15)	<i>p</i> -Xylene	RE	29/06/2015
01/06/2015 01:15	30/06/2015 14:10	Outliers – intermittent drop outs	Toluene and p-Xylene	RE	28/07/2015
02/06/2015 01:40	26/06/2015 01:45	Intermittent instrument stabilisation following automatic overnight calibration cycle	NO, NO ₂ and NO _x	RE	28/07/2015
04/06/2015 11:25	04/06/2015 14:25	Scheduled maintenance and subsequent instrument stabilisation	NO, NO ₂ , NO _X , SO ₂ and H ₂ S	RE	28/07/2015
04/06/2015 14:30	05/06/2015 17:55	Scheduled maintenance performed over 2 days	втх	RE	28/07/2015
05/06/2015 18:00	01/07/2015 13:05	Static offset of 0.19 ppb applied to correct baseline	Benzene	RE	28/07/2015
11/06/2015 03:45	18/06/2015 03:50	Intermittent instrument stabilisation following automatic weekly calibration cycle	H₂S	RE	28/07/2015
18/06/2015 06:40	27/06/2015 09:15	Intermittent wind speed spikes	WS and WD	RE	28/07/2015
20/06/2015 01:40	21/06/2015 00:55	Instrument fault – remained in calibration mode following overnight calibration cycle	NO, NO ₂ and NO _x	RE	28/07/2015
29/06/2015 09:35	29/06/2015 23:45	Power interruption and subsequent instrument stabilisation. Stabilisation periods differ between instruments	All parameters	RE	28/07/2015

Report No: DAT9737

Peabody Energy



8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters with the exception of the following;

- NO, NO₂ and NO_x had a data capture of 92.8% and was impacted by and instrument fault on 20/06/2015.
- H₂S had a data capture of 92.3% and was impacted by weekly calibration cycles and subsequent instrument stabilisation.
- Toluene had a data capture of 94.4% and was impacted by scheduled maintenance and intermittent outliers.
- *p*-Xylene had a data capture of 84.7% and was impacted by scheduled maintenance and intermittent outliers.
- All parameters were affected by a power interruption on 29/06/2015.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

Report No: DAT9737

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9737

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9737

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED ACCREDITATION

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st July – 31st July 2015

Report No.: DAT9849

Report issue date: 28th August 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9849

Peabody Energy

Customer Details				
Customer Peabody Energy Australia				
Contact name	Clark Potter			
Address	Locked Bag 2005, Mudgee 2850 NSW			
Email	cpotter@peabodyenergy.com			
Phone	+61 (02) 6370 2527			

Revision History						
Revision Report ID Date Analyst						
0 DAT9849 28/08/2015 Robyn EDWARDS						

Report by: Robyn EDWARDS Stickwords

Approved Signatory: Jon ALEXANDER

Report No: DAT9849

Peabody Energy

Table of Contents

Cı	ustor	mer D	Details	2
R	evisio	on His	story	2
Ta	able (of Co	ntents	3
Li	st of	Figur	res	4
Li	st of	Table	es	5
1.0	E	xecut	tive Summary	6
2.0	In	ntrod	uction	7
3.0	N	1onit	oring and Data Collection	7
3.	1.	Sitin	ng Details	7
3.	2.	Mor	nitored Parameters	9
3.	3.	Data	a Collection Methods	. 10
	3.3.	.1.	Compliance with Standards	. 11
	3.3.	.2.	Data Acquisition	. 11
3.	4.	Data	a Validation and Reporting	. 11
	3.4.	.1.	Validation	. 11
	3.4.	.2.	Reporting	. 12
4.0	Α	ir Qu	ality Goals	. 13
4.	1.	Air (Quality Summary	. 13
5.0	C	alibra	ations and Maintenance	. 14
5.	1.	Unit	ts and Uncertainties	. 14
5.	2.	Auto	omatic Checks	. 15
5.	3.	Mai	ntenance	. 15

Report No: DAT9849

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16
6.0 Results	18
6.1. Data Capture	18
6.2. Graphic Representations	19
7.0 Valid Data Exception Tables	23
8.0 Report Summary	25
Appendix 1 - Definitions & Abbreviations	26
Appendix 2 - Explanation of Exception Table	27
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	19
Figure 3: NO ₂ - 1 hour data	20
Figure 4: NO _X - 1 hour data	20
Figure 5: SO ₂ - 1 hour data	21
Figure 6: H₂S - 1 hour data	21
Figure 7: BTX - 1 hour data	22

Report No: DAT9849

Peabody Energy

List of Tables

Fable 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Гable 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Fable 9: Data Capture for Wilpinjong Wollar Station	18
Table 10: Wollar Valid Data Exception Table	23

Report No: DAT9849

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for July 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9849

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ July 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;95109
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT9849

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9849

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography	
H₂S	Ecotech EC9852 - fluorescence	
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence	
SO ₂	Ecotech EC9850 – fluorescence	
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic	
Wind Direction (10m)	Vaisala WS425 – ultrasonic	

Report No: DAT9849

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method		
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method		
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence		
SO ₂	AS 3580.4.1 - 2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method		
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence		
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography		
Vector Wind Speed	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer		
Vector Wind	AS 3580.14 2011	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer		

Report No: DAT9849

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT9849

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Jul-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5min Averages
- Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9849

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	SO ₂ 1 day		-

Report No: DAT9849

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9849

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)	
NO, NO ₂ , NO _x	01:00 to 01:45	N/A	
SO ₂	01:00 to 01:40	23:50 to 00:00	
H ₂ S	01:55 to 03:50 (weekly)	23:50 to 00:05	

5.3. Maintenance

A number of visits were made to site during the reporting month, detailed as follows;

On 01/07/2015, scheduled monthly maintenance was carried out on all instruments.

On 02/07/2015, monthly maintenance was completed and also included a multi-point calibration performed on the BTX analyser, the multi-point for p-Xylene having failed. The span and zero calibration cycles were changed to run every 2^{nd} day for NO_x and SO_2 as the calibration gas is running low.

On 22/07/2015 it was noted that the SO_2 analyser had a high voltage failure which was rectified on 17/07/2015. In addition to this the overnight SO_2 calibration cycles were not running. An exit calibration was performed on the instrument and replaced. The mast and a wind tunnel calibrated wind sensor were also replaced during this visit, as

Report No: DAT9849

Peabody Energy

well as the BTX analyser. Monthly maintenance tasks were carried out on all instruments.

Note: Following the replacement of the BTX analyser, there is a vast improvement in recorded data for p-Xylene. The instrument is subject to investigation on return to the Ecotech offices in Melbourne, and past data will be reviewed once the findings have been reported. Data in this report up to the replacement of the instrument is therefore for reference purposes only.

On 23/07/2015 the monthly maintenance tasks started the day before, were completed.

A final visit to site on 29/07/2015 found a leak on the pump tube of the NO_x analyser, which was replaced and a calibration performed on the instrument.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	29/07/2015	Monthly	29/07/2015	Monthly
SO ₂	22/07/2015	Monthly	05/06/2015	Monthly
H₂S	23/07/2015	Monthly	23/07/2015	Monthly

Report No: DAT9849

Peabody Energy

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
втх	22/07/2015	Yearly	16/07/2015	Monthly
Wind Speed	22/07/2015	2-Yearly	21/05/2015	2-Yearly
Wind Direction	22/07/2015	2-Yearly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9849

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation: Data capture = (Reported air quality data / Total data) \times 100% Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ July 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	97.3
SO ₂	85.5
H₂S	93.2
Benzene	94.7
Toluene	92.3
<i>p</i> -Xylene	84.3
WS, WD	99.9

Report No: DAT9849

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

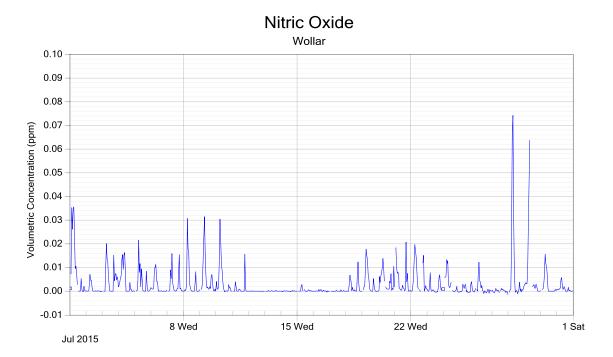


Figure 2: NO - 1 hour data

Report No: DAT9849

Peabody Energy

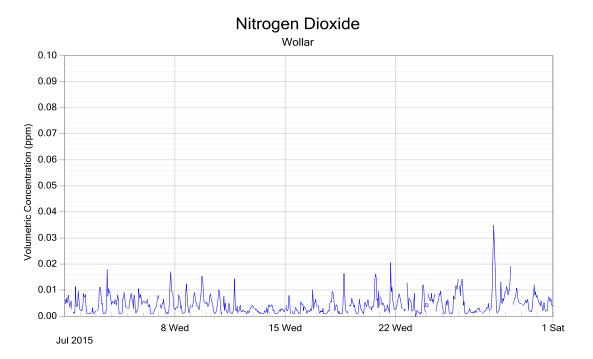


Figure 3: NO₂ - 1 hour data

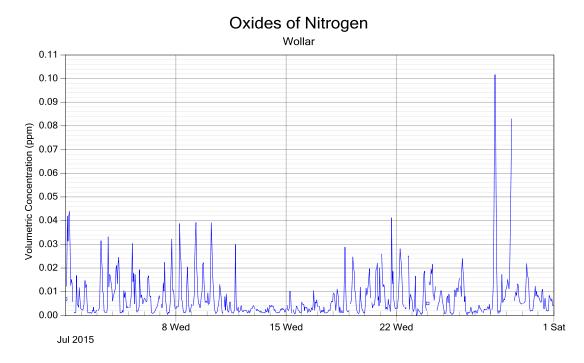


Figure 4: NO_X - 1 hour data

Report No: DAT9849

Peabody Energy

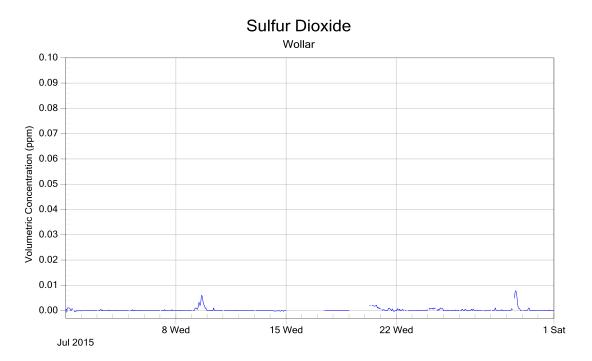


Figure 5: SO₂ - 1 hour data

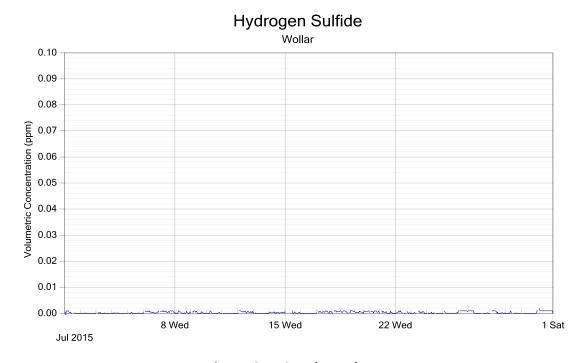


Figure 6: H₂S - 1 hour data

Report No: DAT9849

Peabody Energy

Benzene, Toluene and p-Xylene

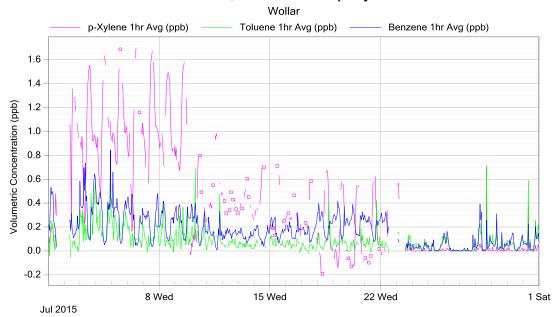


Figure 7: BTX - 1 hour data

Report No: DAT9849

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
01/07/2015 09:358	22/07/2015 12:35	Outliers – intermittent drop outs	Toluene and p-Xylene	RE	28/08/2015
01/07/2015 00:00	01/07/2015 13:05	Static offset of 0.19 ppb applied to correct baseline (continued from Jun-15)	Benzene	RE	28/07/2015
01/07/2015 01:40	30/07/2015 01:45	Intermittent instrument stabilisation following automatic overnight calibration cycle	NO, NO ₂ and NO _x	RE	28/08/2015
01/07/2015 11:55	01/07/2015 14:30	Scheduled maintenance and subsequent instrument stabilisation	NO, NO ₂ , NO _X , SO ₂ and H ₂ S	RE	28/08/2015
01/07/2015 12:20	02/07/2015 07:30	Scheduled maintenance performed over 2 days	ВТХ	RE	28/08/2015
02/07/2015 07:35	22/07/2015 12:45	Static offset of 0.17 ppb applied to correct baseline	Benzene	RE	28/08/2015
02/07/2015 07:35	09/07/2015 22:30	Static offset of 0.86 ppb applied to correct baseline	<i>p</i> -Xylene	RE	28/08/2015
02/07/2015 10:55	31/07/2015 18:50	Intermittent data transmission errors	All parameters	RE	28/08/2015
10/07/2015 17:45	10/07/2015 17:50	Brief power interruption	All parameters	RE	28/08/2015
12/07/2015 03:00	31/07/2015 03:00	Instrument stabilisation following automatic weekly calibration cycle	H₂S	RE	28/08/2015
15/07/2015 02:40	17/07/2015 10:40	Instrument fault – remained in calibration mode due high voltage failure	SO ₂	RE	28/08/2015
15/07/2015 10:25	15/07/2015 11:10	Maintenance – remote calibration	NO, NO ₂ , NO _x , SO ₂ and H ₂ S	RE	28/08/2015

Report No: DAT9849

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
19/07/2015 01:00	20/07/2015 07:50	Instrument fault – remained in calibration mode following overnight calibration cycle	SO ₂	RE	28/08/2015
19/07/2015 06:55	20/07/2015 07:30	Intermittent wind speed spikes	WS and WD	RE	28/08/2015
20/07/2015 10:10	20/07/2015 10:50	Maintenance – remote calibration	NO, NO ₂ , NO _X , SO ₂ and H ₂ S	RE	28/08/2015
22/07/2015 11:55	22/07/2015 17:50	Maintenance – replaced SO ₂ and BTX analysers, replaced mast and wind sensor and performed monthly maintenance on all other instruments	SO ₂ , BTX, WS and WD, NO, NO ₂ and NO _x	RE	28/08/2015
22/07/2015 18:30	23/07/2015 01:35	Unknown instrument fault	ВТХ	RE	28/08/2015
23/07/2015 05:05	23/07/2015 13:55	Instrument in 'out of service' mode	ВТХ	RE	28/08/2015
23/07/2015 08:50	23/07/2015 10:15	Maintenance on H₂S analyser	H₂S	RE	28/08/2015
29/07/2015 09:00	29/07/2015 12:00	Maintenance – leak fault on pump tube and calibration check	NO, NO ₂ , NO _X , SO ₂ and H ₂ S	RE	28/08/2015

Report No: DAT9849

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters with the exception of NO, NO_2 , NO_x and WS and WD;

- All parameters were affected by the on-going maintenance visits throughout the month.
 Further details can be found in Section 5.3 Maintenance and Section 7.0 Valid Data Exception tables.
- Individual data capture percentages are detailed in Section 6.1 Table 9: Data Capture for Wilpinjong Wollar Station

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

END OF REPORT

Report No: DAT9849

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9849

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9849

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st August – 31st August 2015

Report No.: DAT9935

Report issue date: 25th September 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT9935

Peabody Energy

Customer Details		
Customer	Peabody Energy Australia	
Contact name	Clark Potter	
Address	Locked Bag 2005, Mudgee 2850 NSW	
Email	cpotter@peabodyenergy.com	
Phone	+61 (02) 6370 2527	

Revision History				
Revision	Report ID	Date		
0	DAT9935	25/09/2015	Robyn EDWARDS	

Report by:	Robyn EDWARDS	Lalwords.
		11 -11-11
Approved Signatory:	Amanda ELLIOTT	Ala Muy

Report No: DAT9935

Peabody Energy

Table of Contents

	Custo	mer Details	2
	Revis	ion History	2
	Table	of Contents	3
	List o	f Figures	4
	List o	f Tables	5
1.	.0 I	Executive Summary	6
2.	.0 I	ntroduction	7
3.	.0 0.	Monitoring and Data Collection	7
	3.1.	Siting Details	7
	3.2.	Monitored Parameters	9
	3.3.	Data Collection Methods	10
	3.3	3.1. Compliance with Standards	11
	3.3	3.2. Data Acquisition	11
	3.4.	Data Validation and Reporting	11
	3.4	1.1. Validation	11
	3.4	1.2. Reporting	12
4.	.0 /	Air Quality Goals	13
	4.1.	Air Quality Summary	13
5.	.0 0	Calibrations and Maintenance	14
	5.1.	Units and Uncertainties	14
	5.2.	Automatic Checks	15
	5.3.	Maintenance	15

Report No: DAT9935

Peabody Energy

5.3.1. Calibration & Maintenance Summ	ary Tables15
6.0 Results	17
6.1. Data Capture	17
6.2. Graphic Representations	18
7.0 Valid Data Exception Tables	22
8.0 Report Summary	23
Appendix 1 - Definitions & Abbreviations	24
Appendix 2 - Explanation of Exception Table	25
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Lo	cation8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT9935

Peabody Energy

List of Tables

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT9935

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for August 2015. Data capture for the different pollutants is presented in Table 9

Report No: DAT9935

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ August 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;95109
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT9935

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT9935

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H₂S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Report No: DAT9935

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method	
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method	
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence	
SO ₂	AS 3580.4.1 - 2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method	
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence	
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography	
Vector Wind Speed	AS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer	
Vector Wind Direction	AS 3580.14 2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications	
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer	

Report No: DAT9935

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT9935

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Aug-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT9935

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence	
NO ₂	1 hour	-	-	
SO ₂	1 hour	-	-	
SO ₂	1 day	-	-	

Report No: DAT9935

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT9935

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H ₂ S	01:55 to 03:50 (weekly)	23:50 to 00:05

5.3. Maintenance

Scheduled monthly maintenance was performed on 20/08/2015 and included the replacement of the H_2S analyser. The fuse on the convertor for this analyser was found to have blown and was replaced. The controller was also showing some issue with the set temperature, and this and the catalyst assembly will be replaced at the next scheduled visit.

It was noted that the rear light and globe are missing from the trailer.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Report No: DAT9935

Peabody Energy

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	20/08/2015	Monthly	20/08/2015	Monthly
SO ₂	20/08/2015	Monthly	20/08/2015	Monthly
H ₂ S	20/08/2015	Monthly	20/08/2015	Monthly
втх	20/08/2015	Yearly	16/07/2015	Monthly
Wind Speed	20/08/2015	2-Yearly	21/05/2015	2-Yearly
Wind Direction	20/08/2015	2-Yearly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT9935

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ August 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	97.3
SO ₂	97.7
H₂S	57.5
Benzene	100.0
Toluene	100.0
<i>p</i> -Xylene	100.0
WS, WD	99.9

Report No: DAT9935

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

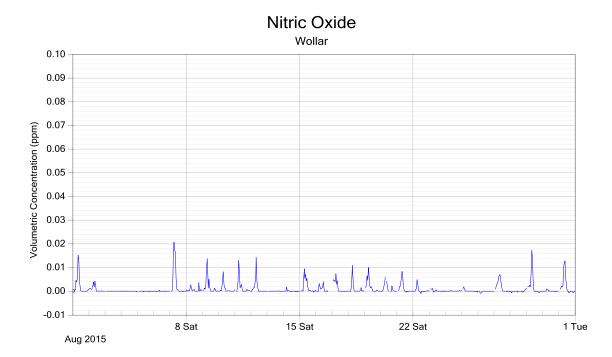


Figure 2: NO - 1 hour data

Report No: DAT9935

Peabody Energy

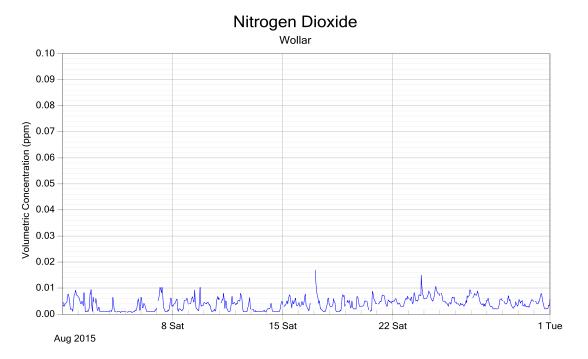


Figure 3: NO₂ - 1 hour data

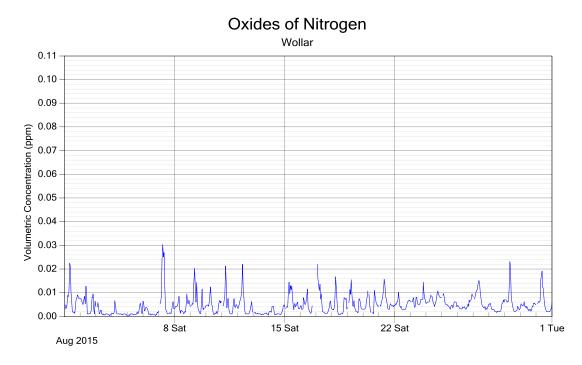


Figure 4: NO_X - 1 hour data

Report No: DAT9935

Peabody Energy

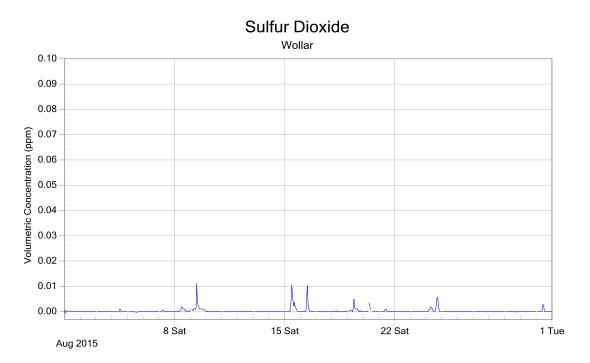


Figure 5: SO₂ - 1 hour data

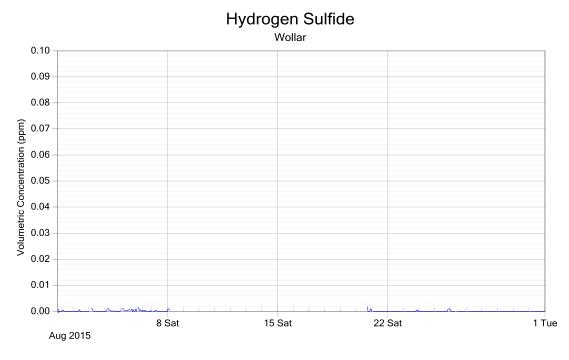


Figure 6: H₂S - 1 hour data

Report No: DAT9935

Peabody Energy

Benzene, Toluene and p-Xylene

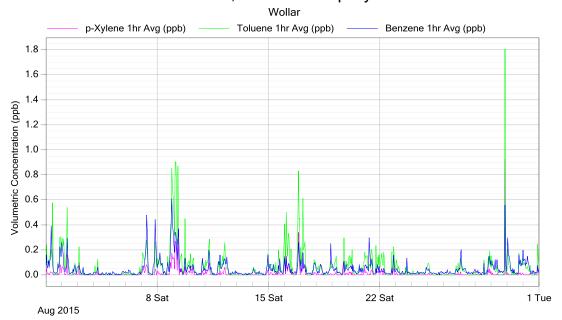


Figure 7: BTX - 1 hour data

Report No: DAT9935

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
08/08/2015 04:50	26/08/2015 09:05	Intermittent data transmission errors	SO ₂ , H ₂ S, NO _x	RE	24/09/2015
08/08/2015 05:10	26/08/2015 09:45	Intermittent instrument fault	H ₂ S	RE	24/09/2015
12/08/2015 18:00	24/08/2015 19:05	Intermittent wind speed spikes	WS and WD	RE	24/09/2015
16/08/2015 19:00	17/08/2015 00:20	Instrument fault	NO, NO ₂ and NO _x	RE	24/09/2015
20/08/2015 08:05	20/08/2015 17:05	Scheduled monthly maintenance and replaced H ₂ S analyser	NO, NO ₂ , NO _x , SO ₂ and H ₂ S	RE	24/09/2015
30/08/2015 20:40	30/08/2015 20:40	Outlier	NO, NO ₂ and NO _x	RE	24/09/2015

Report No: DAT9935

Peabody Energy

8.0 Report Summary

The data capture for Wollar was below 95% for all measured parameters with the exception of H_2S ;

• Data capture for H_2S was 57.5% and was impacted by an instrument fault between the 08/08/2015 and 26/08/2015. The instrument was replaced during routine maintenance on 20/08/2015.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

Report No: DAT9935

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT9935

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT9935

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED ACCREDITATION

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

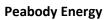
1st September – 30th September 2015

Report No.: DAT10015

Report issue date: 28th October 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081


1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT10015

Customer Details				
Customer	Peabody Energy Australia			
Contact name	Clark Potter			
Address	Locked Bag 2005, Mudgee 2850 NSW			
Email	cpotter@peabodyenergy.com			
Phone	+61 (02) 6370 2527			

Revision History			
Revision	Report ID	Date	Analyst
0	DAT10015	28/10/2015	Robyn Edwards

Report by:	Robyn EDWARDS	
Approved Signatory:	Jon ALEXANDER	

Report No: DAT10015

Peabody Energy

Table of Contents

	Custo	omer Details	2
	Revis	ion History	2
	Table	of Contents	3
	List o	f Figures	4
	List o	f Tables	5
1.	.0 I	Executive Summary	6
2.	.0 I	Introduction	7
3.	.0 0.	Monitoring and Data Collection	7
	3.1.	Siting Details	7
	3.2.	Monitored Parameters	9
	3.3.	Data Collection Methods	. 10
	3.3	3.1. Compliance with Standards	. 11
	3.3	3.2. Data Acquisition	. 11
	3.4.	Data Validation and Reporting	. 11
	3.4	4.1. Validation	. 11
	3.4	4.2. Reporting	.12
4.	.0 /	Air Quality Goals	. 13
	4.1.	Air Quality Summary	. 13
5.	.0 0	Calibrations and Maintenance	. 14
	5.1.	Units and Uncertainties	. 14
	5.2.	Automatic Checks	. 15
	5.3.	Maintenance	. 15

Report No: DAT10015

Peabody Energy

	5.3.1.	Calibration & Maintenance Summary Tables	15
6.0	Result	ts	17
6.	1. Dat	a Capture	17
6.	2. Gra	phic Representations	18
7.0	Valid (Data Exception Tables	22
8.0	Repor	t Summary	23
Арр	endix 1 - I	Definitions & Abbreviations	24
Арр	endix 2 - I	Explanation of Exception Table	25
List	of Figu	ıres	
Figu	re 1: Wil	pinjong Mine Monitoring Station Location	8
Figu	re 2: NO -	- 1 hour data	18
Figu	re 3: NO ₂	- 1 hour data	19
Figu	re 4: NO _x	- 1 hour data	19
Figu	re 5: SO ₂	- 1 hour data	20
Figu	re 6: H ₂ S	- 1 hour data	20
Figu	ro 7· RTY	- 1 hour data	21

Report No: DAT10015

Peabody Energy

List of Tables

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT10015

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 30^{th}$ September 2015. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10015

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 30^{th}$ September 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT10015

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT10015

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H₂S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Report No: DAT10015

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method		
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method		
πο, πο ₂ , πο _χ	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence		
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method		
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence		
H ₂ S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence		
BTX (Benzene, Toluene and p-Xylene) Synspec GC955 Series Manual		Synspec GC955 - Gas Chromatography		
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer		
Vector Wind Direction	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer		

Report No: DAT10015

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10015

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Sept-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10015

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10015

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT10015

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run each night for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H₂S	Refer to VDET for details	23:50 to 00:05

5.3. Maintenance

Scheduled 3-monthly maintenance was performed over two days; 29th and 30th September 2015. Calibrations were performed on all instruments and no issues were raised.

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Report No: DAT10015

Peabody Energy

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	30/09/2015	3-monthly	30/09/2015	Monthly
SO ₂	30/09/2015	3-monthly	30/09/2015	Monthly
H₂S	30/09/2015	3-monthly	30/09/2015	Monthly
втх	30/09/2015	3-monthly	30/09/2015	Monthly
Wind Speed	29/09/2015	3-monthly	21/05/2015	2-Yearly
Wind Direction	29/09/2015	3-monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10015

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 30^{th}$ September 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	97.6
SO ₂	97.5
H₂S	97.0
Benzene	99.4
Toluene	99.4
<i>p</i> -Xylene	99.4
WS, WD	100.0

Report No: DAT10015

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

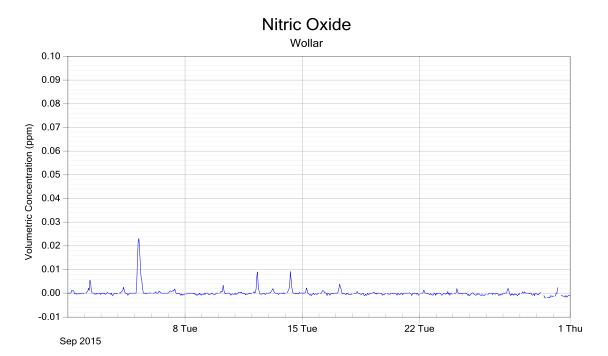


Figure 2: NO - 1 hour data

Report No: DAT10015

Peabody Energy

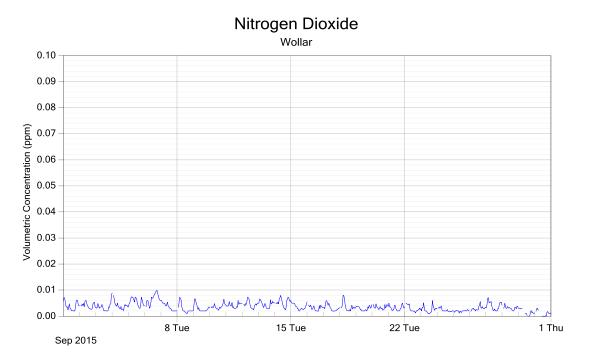


Figure 3: NO₂ - 1 hour data

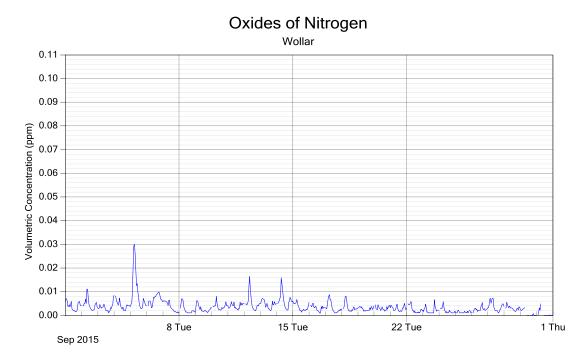


Figure 4: NO_X - 1 hour data

Report No: DAT10015

Peabody Energy

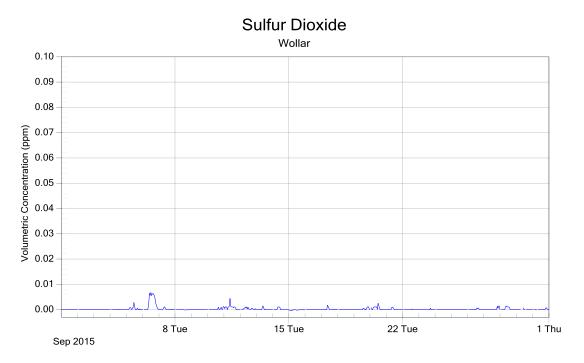


Figure 5: SO₂ - 1 hour data

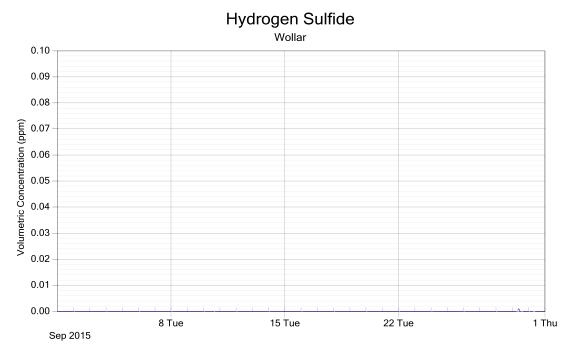


Figure 6: H₂S - 1 hour data

Report No: DAT10015

Peabody Energy

Benzene, Toluene and p-Xylene

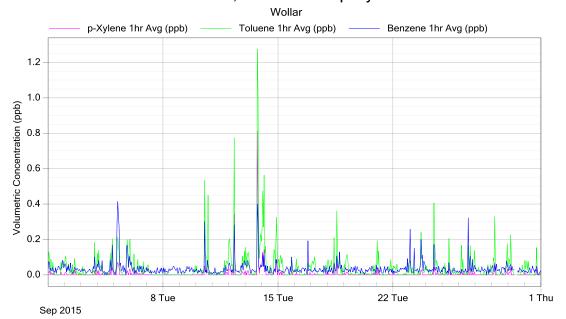


Figure 7: BTX - 1 hour data

Report No: DAT10015

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
10/09/2015 15:50	10/09/2015 16:55	Remote calibration	H₂S	RE	26/10/2015
29/09/2015 07:30	29/09/2015 15:40	Scheduled 3-monthly maintenance – intermittent data affected NO, NO ₂ , NO _x , SO ₂ , H ₂ S and BTX RE		26/10/2015	
30/09/2015 07:30	30/09/2015 11:10	Completion of 3-monthly maintenance – intermittent data affected	NO, NO ₂ , NO _x , SO ₂ and H ₂ S	RE	26/10/2015

Report No: DAT10015

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

-----END OF REPORT-----

Report No: DAT10015

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT10015

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10015

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

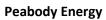
1st October – 31st October 2015

Report No.: DAT10169

Report issue date: 30th November 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081


1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT10169

	Customer Details		
Customer	Peabody Energy Australia		
Contact name Clark Potter			
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone	+61 (02) 6370 2527		

Revision History				
Revision	Report ID	Date	Analyst	
0	DAT10169	30/11/2015	Robyn Edwards	

Report by:	Robyn EDWARDS	
Approved Signatory:	Jon ALEXANDER	

Report No: DAT10169

Peabody Energy

Table of Contents

	Custo	omer D	Details	2
	Revis	sion Hi	story	2
	Table	e of Co	ntents	3
	List o	of Figur	res	4
	List o	of Table	es	5
1.	.0	Execut	tive Summary	6
2.	.0	Introd	uction	7
3.	.0	Monit	oring and Data Collection	7
	3.1.	Sitir	ng Details	7
	3.2.	Mor	nitored Parameters	9
	3.3.	Data	a Collection Methods	10
	3.	3.1.	Compliance with Standards	11
	3.	3.2.	Data Acquisition	11
	3.4.	Data	a Validation and Reporting	11
	3.	4.1.	Validation	11
	3.	4.2.	Reporting	12
4.	.0	Air Qu	ality Goals	13
	4.1.	Air (Quality Summary	13
5.	.0	Calibra	ations and Maintenance	14
	5.1.	Unit	ts and Uncertainties	14
	5.2.	Auto	omatic Checks	15
	5.3.	Mai	ntenance	15

Report No: DAT10169

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16
6.0 Results	17
6.1. Data Capture	17
6.2. Graphic Representations	18
7.0 Valid Data Exception Tables	22
8.0 Report Summary	24
Appendix 1 - Definitions & Abbreviations	25
Appendix 2 - Explanation of Exception Table	26
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10169

Peabody Energy

List of Tables

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT10169

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 31^{st}$ October 2015. Data capture for the different pollutants is presented in Table 9.

Report No: DAT10169

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ October 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT10169

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT10169

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography
H₂S	Ecotech EC9852 - fluorescence
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence
SO ₂	Ecotech EC9850 – fluorescence
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic
Wind Direction (10m)	Vaisala WS425 – ultrasonic

Report No: DAT10169

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H₂S	Ecotech Laboratory Manual In-house method 6.5 Hydrogen sulfide by fluorescend	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Report No: DAT10169

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10169

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpingjong Coal Validated Data Report Oct-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10169

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year 30 ppb None		None	
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day 80 ppb 1 day a yea		1 day a year	
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10169

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT10169

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second day for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45 every 2 nd day	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H₂S	Refer to VDET for details	23:50 to 00:05

5.3. Maintenance

Unscheduled maintenance was performed on 14/10/2015 due to loss of communication with the H_2S analyser. This was followed up with a remote calibration on 15/10/2015.

A further unscheduled visit was made on 16/10/2015 due to flat lined data. Possible lightning in the area caused power to be lost, which was reset.

Monthly maintenance was performed over 2-days on 28/10/2015 and 29/10/2015, which included the replacement of the BTX analyser; recently calibrated and fully serviced in Melbourne. Please note that the analyser was calibrated against a non-NATA compliant gas bottle.

Report No: DAT10169

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	28/10/2015	Monthly	28/10/2015	Monthly
SO ₂	28/10/2015	Monthly	28/10/2015	Monthly
H₂S	28/10/2015	Monthly	28/10/2015	Monthly
втх	29/10/2015	Monthly	29/10/2015	Monthly
Wind Speed	28/10/2015	Monthly	21/05/2015	2-Yearly
Wind Direction	28/10/2015	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10169

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 1^{st}$ October 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	97.2
SO ₂	97.6
H₂S	76.8
Benzene	95.8
Toluene	95.8
<i>p</i> -Xylene	95.8
WS, WD	80.7

Report No: DAT10169

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

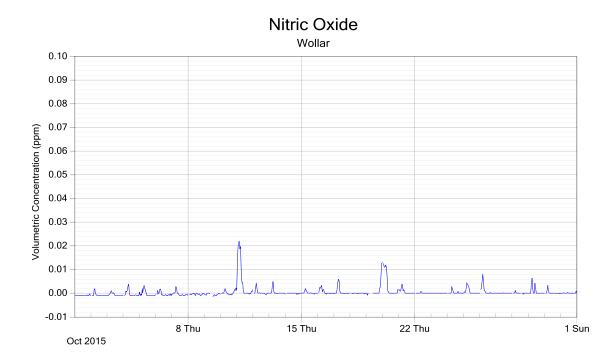


Figure 2: NO - 1 hour data

Report No: DAT10169

Peabody Energy

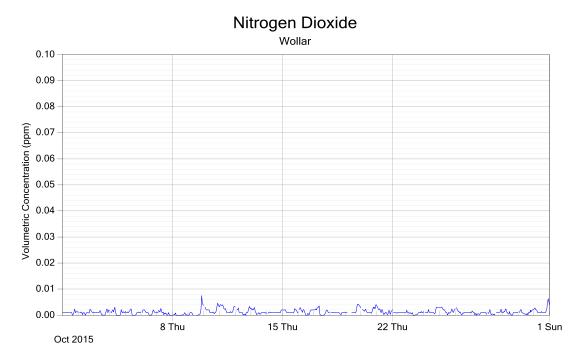


Figure 3: NO₂ - 1 hour data

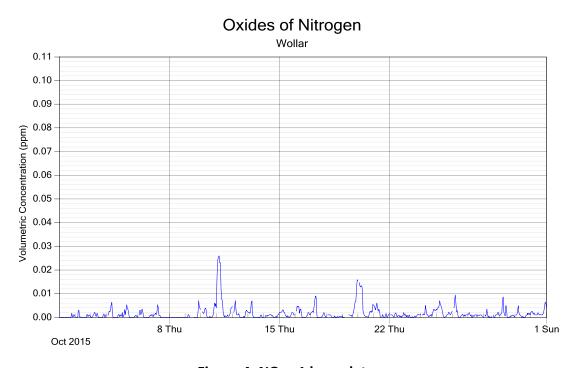


Figure 4: NO_X - 1 hour data

Report No: DAT10169

Peabody Energy

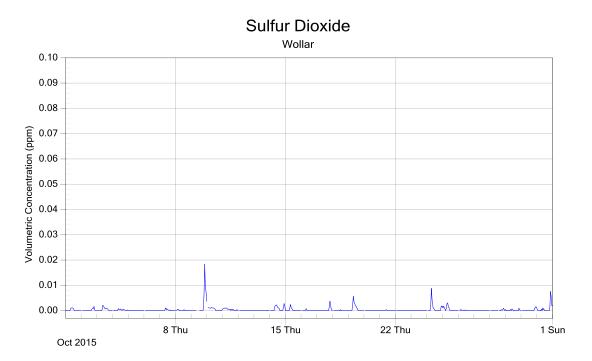


Figure 5: SO₂ - 1 hour data

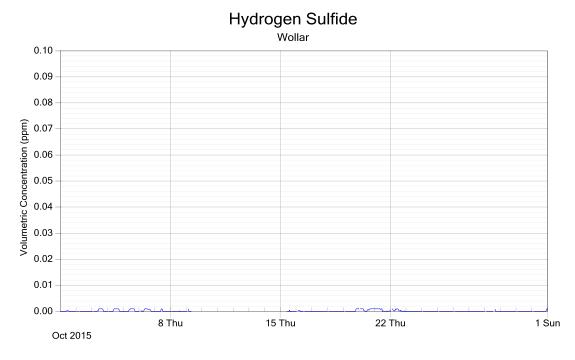


Figure 6: H₂S - 1 hour data

Report No: DAT10169

Peabody Energy

Benzene, Toluene and p-Xylene

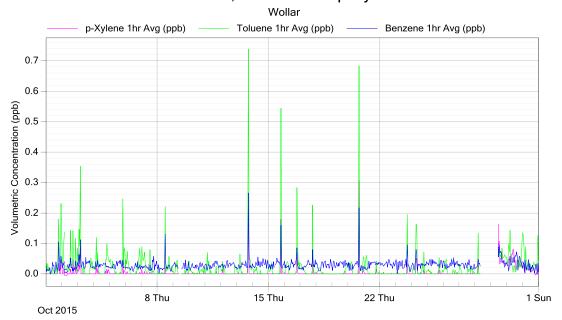


Figure 7: BTX - 1 hour data

Report No: DAT10169

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
02/10/2015 05:30	02/10/2015 07:55	Intermittent BTX instrument fault – SO_2 , H_2S , WS and WD intermittently affected	BTX,SO ₂ , H ₂ S, WS and WD	RE	27/11/2015
04/10/2015 07:25	31/10/2015 02:50	Intermittent span/zero calibration cycles	H₂S	RE	27/11/2015
09/10/2015 09:15	09/10/2015 12:40	Power interruption	All parameters	RE	27/11/2015
09/10/2015 12:45	09/10/2015 13:10	Extended power interruption	втх	RE	27/11/2015
09/10/2015 12:45	14/10/2015 10:15	Instrument fault – connection not restored following power interruption	H ₂ S	RE	27/11/2015
10/10/2015 16:35	16/10/2015 12:20	Instrument fault – possibly caused by lightning in the area	WS, WD and Sigma	RE	27/11/2015
14/10/2015 10:20	14/10/2015 15:45	Unscheduled maintenance – restore communications following power interruption	H₂S	RE	27/11/2015
14/10/2015 15:50	15/10/2015 08:15	Overnight calibration check outside of measurement tolerance	H₂S	RE	27/11/2015
15/10/2015 08:20	15/10/2015 10:10	Remote calibration performed following maintenance	H₂S	RE	27/11/2015
15/10/2015 10:10	15/10/2015 10:25	Remote calibration performed	втх	RE	27/11/2015
15/10/2015 14:25	27/10/2015 11:55	Intermittent unrealistic data where NO exceeds NO _x	NO, NO ₂ and NO _x	RE	27/11/2015

Report No: DAT10169

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
16/10/2015 12:25	16/10/2015 12:40	Unscheduled maintenance – resolve wind sensor instrument fault	WS, WD and Sigma	RE	27/11/2015
19/10/2015 04:20	19/10/2015 09:30	Instrument fault – not enough samples for 5min averaging	NO, NO ₂ and NO _x	RE	27/11/2015
28/10/2015 09:25	28/10/2015 16:00	Scheduled monthly maintenance and replacement of BTX analyser – intermittent data affected	All parameters	RE	27/11/2015
28/10/2015 16:05	29/10/2015 07:10	Instrument left in 'out of service mode' for continued maintenance	втх	RE	27/11/2015
29/10/2015 07:15	29/10/2015 11:10	Maintenance completed on BTX analyser	втх	RE	27/11/2015
29/10/2015 11:15	31/10/2015 23:55	Static offset of 0.25 ppb applied to correct baseline (continues into Nov-15)	<i>p</i> -Xylene	RE	27/11/2015
29/10/2015 11:15	31/10/2015 23:55	Static offset of 0.1 ppb applied to correct baseline (continues into Nov-15)	Toluene	RE	27/11/2015
29/10/2015 11:15	31/10/2015 23:55	Static offset of 0.12 ppb applied to correct baseline (continues into Nov-15)	Benzene	RE	27/11/2015

Report No: DAT10169

Peabody Energy

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters, with the exception of H_2S , WS and WD;

- Data capture for H₂S was 76.8% and this was impacted by the instrument not restoring connection following a power interruption
- Data capture for WS and WD was 80.7% and this was impacted by an instrument fault, possibly caused by lightning in the area, resulting in flat lined data

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

END OF DEDORT
END OF REPORT

Report No: DAT10169

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT10169

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10169

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st November – 30th November 2015

Report No.: DAT10240

Report issue date: 24th December 2015

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT10240

Peabody Energy

Customer Details			
Customer	Customer Peabody Energy Australia		
Contact name	Clark Potter		
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone	+61 (02) 6370 2527		

Revision History					
Revision Report ID Date Analyst					
0	DAT10240	24/12/2015	Caroline Knight		

Report by: Caroline KNIGHT

Approved Signatory: Jon ALEXANDER

Report No: DAT10240

Peabody Energy

Table of Contents

Cı	ustor	mer D	Details	2
R	evisio	on His	story	2
Ta	able (of Co	ntents	3
Li	st of	Figur	res	4
Li	st of	Table	es	5
1.0	E	xecut	tive Summary	6
2.0	In	ntrod	uction	7
3.0	N	1onit	oring and Data Collection	7
3.	1.	Sitin	ng Details	7
3.	2.	Mor	nitored Parameters	9
3.	3.	Data	a Collection Methods	. 10
	3.3.	.1.	Compliance with Standards	.11
	3.3.	.2.	Data Acquisition	. 11
3.	4.	Data	a Validation and Reporting	. 11
	3.4.	.1.	Validation	.11
	3.4.	.2.	Reporting	.12
4.0	А	ir Qu	ality Goals	. 13
4.	1.	Air (Quality Summary	.13
5.0	C	alibra	ations and Maintenance	. 14
5.	1.	Unit	ts and Uncertainties	. 14
5.	2.	Auto	omatic Checks	. 15
5.	3.	Mai	ntenance	. 15

Report No: DAT10240

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables	16
6.0 Results	17
6.1. Data Capture	17
6.2. Graphic Representations	18
7.0 Valid Data Exception Tables	22
8.0 Report Summary	24
Appendix 1 - Definitions & Abbreviations	25
Appendix 2 - Explanation of Exception Table	26
List of Figures	
Figure 1: Wilpinjong Mine Monitoring Station Location	8
Figure 2: NO - 1 hour data	18
Figure 3: NO ₂ - 1 hour data	19
Figure 4: NO _x - 1 hour data	19
Figure 5: SO ₂ - 1 hour data	20
Figure 6: H ₂ S - 1 hour data	20
Figure 7: BTX - 1 hour data	21

Report No: DAT10240

Peabody Energy

List of Tables

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT10240

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 30^{th}$ November 2015. Data capture for the measured pollutants is presented in Table 9.

Report No: DAT10240

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 30^{th}$ November 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)
Wollar	Lat: -32.360105 Long: 149.949509	366

Report No: DAT10240

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT10240

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique	
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography	
H₂S	Ecotech EC9852 - fluorescence	
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence	
SO ₂	Ecotech EC9850 – fluorescence	
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic	
Wind Direction (10m)	Vaisala WS425 – ultrasonic	

Report No: DAT10240

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method		
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.3 Determination of oxides of nitrogen – chemiluminescence method		
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence		
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method		
Ecotech Laboratory Manual		In-house method 6.2 Sulfur dioxide by fluorescence		
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography		
		Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer		
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications		
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer		

Report No: DAT10240

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10240

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Nov-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10240

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂ 1 day		-	-

Report No: DAT10240

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT10240

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second day for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)	
NO, NO ₂ , NO _x	01:00 to 01:45 every 2 nd day	N/A	
SO ₂	01:00 to 01:40	23:50 to 00:00	
H ₂ S	Refer to VDET for details	23:50 to 00:05	

5.3. Maintenance

Unscheduled maintenance was performed on 04/11/2015 and 05/11/2015 to confirm BTX offsets and run a zero check.

A further unscheduled visit was made on 10/11/2015, the H_2S analyser was reset following a power interruption which caused it to stop logging data. Follow up maintenance was performed on the 13/11/2015 to perform a calibration on the H_2S instrument.

Monthly maintenance was performed over 2-days on 18/11/2015 and 19/11/2015 for all parameters, and included running a zero check on the BTX analyser, and an adjustment of offsets.

BTX data from 1/11/2015 to the maintenance on 18/11/2015 is provided for reference purposes only due to the calibration check performed on 18/11/2015 finding the instrument to be out of tolerance.

Report No: DAT10240

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	18/11/2015	Monthly	18/11/2015	Monthly
SO ₂	19/11/2015	Monthly	19/11/2015	Monthly
H₂S	18/11/2015	Monthly	18/11/2015	Monthly
втх	19/11/2015	Unscheduled	18/11/2015	Monthly
Wind Speed	18/11/2015	Monthly	21/05/2015	2-Yearly
Wind Direction	18/11/2015	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10240

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 30^{th}$ November 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	97.2
SO ₂	96.9
H₂S	85.8
Benzene	96.7
Toluene	96.7
<i>p</i> -Xylene	96.3
WS, WD	99.7

Report No: DAT10240

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

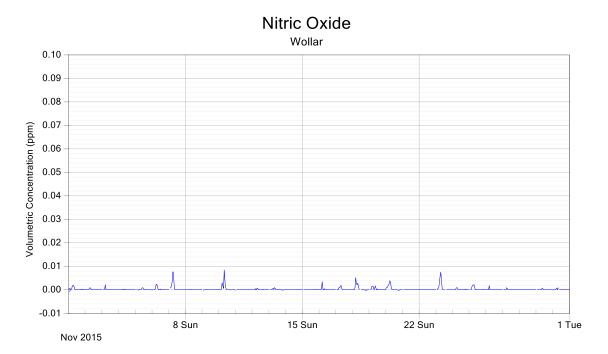


Figure 2: NO - 1 hour data

Report No: DAT10240

Peabody Energy

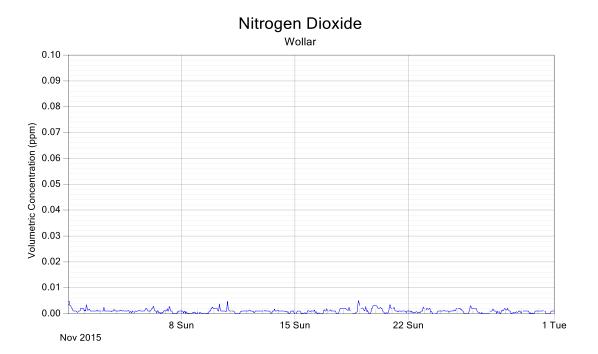


Figure 3: NO₂ - 1 hour data

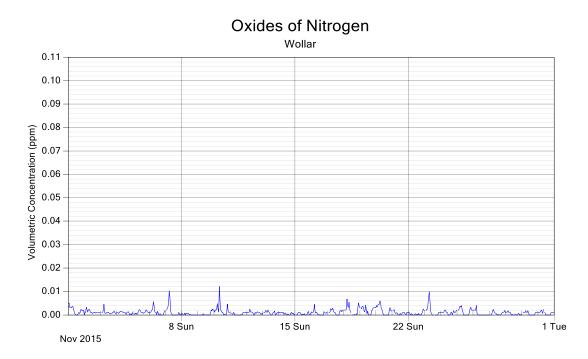


Figure 4: NO_X - 1 hour data

Report No: DAT10240

Peabody Energy

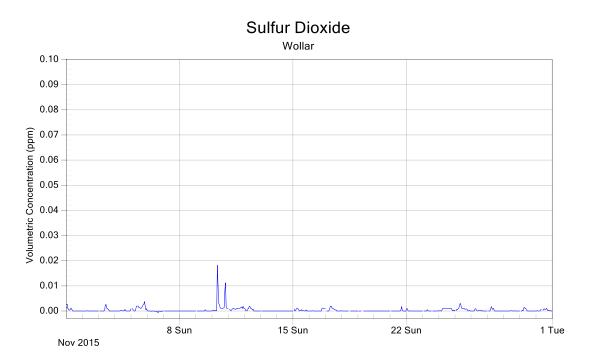


Figure 5: SO₂ - 1 hour data

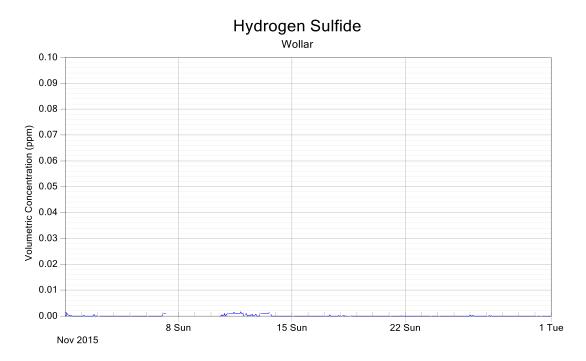


Figure 6: H₂S - 1 hour data

Report No: DAT10240

Peabody Energy

Benzene, Toluene and p-Xylene

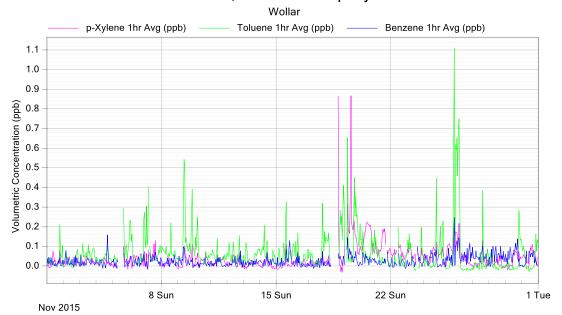


Figure 7: BTX - 1 hour data

Report No: DAT10240

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
1/11/2015 0:00	4/11/2015 8:45	Static offset of 0.25 ppb applied to correct baseline (continues into Nov-15)	p-Xylene	RE	27/11/2015
1/11/2015 0:00	4/11/2015 8:45	Static offset of 0.1 ppb applied to correct baseline (continues into Nov-15)	Toluene	RE	27/11/2015
1/11/2015 0:00	4/11/2015 8:45	Static offset of 0.12 ppb applied to correct baseline (continues into Nov-15)	Benzene	RE	27/11/2015
3/11/2015 1:45	30/11/2015 2:50	Intermittent span/zero calibration cycles	H₂S	СК	17/12/2015
4/11/2015 8:50	4/11/2015 8:50	Instrument stabilisation following maintenance BTX		СК	17/12/2015
5/11/2015 9:05	5/11/2015 15:35	Non-scheduled maintenance - zeros check performed, and instrument stabilisation following maintenance	ВТХ	СК	17/12/2015
6/11/2015 15:30	13/11/2015 21:20	Intermittent data transmission errors	p-Xylene	RE	17/12/2015
7/11/2015 5:45	7/11/2015 6:20	Power interruption and instrument stabilisation	BTX, H₂S, WS, WD, Sigma	СК	17/12/2015
7/11/2015 5:45	10/11/2015 12:35	Instrument offline due to failing back up battery. Instrument settings reset.	H₂S	СК	17/12/2015
7/11/2015 6:25	10/11/2015 10:05	Static offset -0.15ppb applied to data to correct baseline	p-Xylene	СК	17/12/2015
10/11/2015 12:35	10/11/2015 12:35	Instrument reset	H₂S	СК	17/12/2015

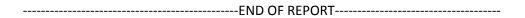
Report No: DAT10240

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
12/11/2015 14:50	12/11/2015 14:55	Unrealistic negative data H ₂ S		СК	17/12/2015
13/11/2015 15:45	13/11/2015 16:55	Non-scheduled maintenance - instrument calibration	H ₂ S	СК	17/12/2015
18/11/2015 9:15	18/11/2015 18:20	Scheduled monthly maintenance and instrument stabilisation	втх	СК	17/12/2015
18/11/2015 11:15	18/11/2015 11:40	Replaced analyser battery	H₂S	СК	17/12/2015
18/11/2015 11:20	18/11/2015 15:40	Scheduled monthly maintenance	BTX, H ₂ S, SO ₂ , NO, NO ₂ , NO _x	СК	17/12/2015
18/11/2015 18:25	30/11/2015 8:40	Static offset +0.10 ppb applied to data to correct baseline p-Xylene		СК	17/12/2015
19/11/2015 6:25	19/11/2015 8:15	Non-scheduled maintenance, zero check performed BTX		СК	17/12/2015
19/11/2015 6:25	19/11/2015 8:25	Non-scheduled maintenance, calibration	SO ₂	СК	17/12/2015
21/11/2015 17:45	21/11/2015 18:15	Power interruption and instrument stabilisation	BTX, H ₂ S, SO ₂ , WS, WD, Sigma	СК	17/12/2015
22/11/2015 10:35	22/11/2015 11:05	Power interruption and instrument stabilisation	BTX, H ₂ S, SO ₂ , WS, WD, Sigma	СК	17/12/2015
23/11/2015 14:05	23/11/2015 15:25	Power interruption and instrument stabilisation	All channels	СК	17/12/2015
23/11/2015 15:05	24/11/2015 0:00	Offset +0.002ppm applied to data to correct baseline	H ₂ S	СК	17/12/2015
30/11/2015 8:45	30/11/2015 9:55	Power interruption and instrument stabilisation	All channels	СК	17/12/2015

Report No: DAT10240

Peabody Energy



8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters, with the exception of H_2S ;

• Data capture for H₂S was 85.8% and this was impacted by the instrument not restoring connection following a power interruption

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

Report No: DAT10240

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed

Report No: DAT10240

Peabody Energy

Appendix 2 - Explanation of Exception Table

Automatic background check refers to when analyser samples zero air and measures the level of the concentration voltage. This voltage is taken as the zero signal level and this value is subtracted from any subsequent readings as an active zero compensation. This is the analyser's fine zero measurement.

Calibration check outside tolerance refers to when the calibration values are outside the tolerance limits set for the precision check.

Calibration correction factor applied to data refers to an offset or multiplier applied to the data. This operation may be performed for a number of reasons including: (a) when a clear trend / drift outside the tolerance limit can be demonstrated by repeated operation precision checks, (b) when a correction is required on previously logged data due to a calibration check being outside the allowable tolerance

Commissioning refers to the initial setup and calibration of the instrument when it is first installed. For some instruments there may be a stabilisation period before normal operation commences.

Data affected by environmental conditions – wind speed / wind speed gust spike refers to when a one-off high reading occurs due to a natural occurrence such as a bird sitting on the wind sensor, or some other event causing the readings to spike.

Data transmission error refers to a period of time when the instrument could not transmit data. This may be due to interference, or a problem with the phone line or modem.

Equipment malfunction/instrument fault refers to a period of time when the instrument was not in the normal operating mode and did not measure a representative value of the existing conditions.

Gap in data/data not available refers to a period of time when either data has been lost or could not be collected.

Instrument Alarm refers to an alarm produced by the instrument. A range of alarms can be produced depending on how operation of the instrument is being affected.

Instrument out of service refers to a lack of data due to an instrument being shut down for repair, maintenance, or factory calibration.

Linear offset or multiplier refers to when an offset or multiplier has been applied between two points where the values of the offset or multiplier are different and the correction is interpolated between the two points.

Report No: DAT10240

Peabody Energy

Logger error refers to when an error occurs and instrument readings are not correctly recorded by the logger.

Maintenance refers to a period of time when the logger / instrument was switched off due to maintenance.

Overnight span/zero out of tolerance refers to when the span/zero reading measured by the analyser during an automatic precision check falls outside of the expected concentration limits.

Power Interruption refers to no power to the station therefore no data was collected at this time.

Remote Calibration refers to when a technician remotely connects to the station and manually performs a span check.

Static offset or multiplier refers to when a single offset or multiplier has been applied to the data between two points either to increase or decrease the measured value.

Warm up after power interruption refers to the startup period of an instrument after power has been restored.

Accredited for compliance with ISO/IEC 17025.

WORLD RECOGNISED
ACCREDITATION

Accreditation No. 14184.

Peabody Energy

Wilpinjong Coal Wollar

Ambient Air Quality Monitoring Validated Report

1st December – 31st December 2015

Report No.: DAT10380

Report issue date: 28th January 2016

Maintenance contract: MC951

ECOTECH PTY LTD. ABN: 32005752081

1492 Ferntree Gully Rd, Knoxfield VIC. 3180. AUSTRALIA

Tel No: 1300 364 946 Fax No: 1300 668 763

Email <u>ecotech@ecotech.com</u> WEB <u>www.ecotech.com</u>

This document shall not be reproduced except for in full, without the written approval of Ecotech Pty Ltd.

Report No: DAT10380

Peabody Energy

Customer Details			
Customer Peabody Energy Australia			
Contact name	Clark Potter		
Address	Locked Bag 2005, Mudgee 2850 NSW		
Email	cpotter@peabodyenergy.com		
Phone +61 (02) 6370 2527			

Revision History				
Revision	Report ID	Date	Analyst	
0	DAT10380	28/01/2016	Elmira Parto	

Report by: Elmira PARTO

Approved Signatory: Jon ALEXANDER

Report No: DAT10380

Peabody Energy

Table of Contents

	Custo	mer Details	2
	Revis	ion History	2
	Table	of Contents	3
	List o	f Figures	4
	List o	f Tables	5
1.	.0 I	Executive Summary	6
2.	.0 I	ntroduction	7
3.	.0 0.	Monitoring and Data Collection	7
	3.1.	Siting Details	7
	3.2.	Monitored Parameters	9
	3.3.	Data Collection Methods	10
	3.3	3.1. Compliance with Standards	11
	3.3	3.2. Data Acquisition	11
	3.4.	Data Validation and Reporting	11
	3.4	1.1. Validation	11
	3.4	1.2. Reporting	12
4.	.0 /	Air Quality Goals	13
	4.1.	Air Quality Summary	13
5.	.0 0	Calibrations and Maintenance	14
	5.1.	Units and Uncertainties	14
	5.2.	Automatic Checks	15
	5.3.	Maintenance	15

Report No: DAT10380

Peabody Energy

	5.3.1.	Calibration & Maintenance Summary Tables	16
6.0	Result	ts	17
6.	1. Dat	a Capture	17
6.	2. Gra	phic Representations	18
7.0	Valid I	Data Exception Tables	22
8.0	Repor	t Summary	23
Арр	endix 1 -	Definitions & Abbreviations	24
Арр	endix 2 -	Explanation of Exception Table	25
List	of Figu	ires	
Figu	re 1: Wil	pinjong Mine Monitoring Station Location	8
Figu	re 2: NO	- 1 hour data	18
Figu	re 3: NO ₂	- 1 hour data	19
Figu	re 4: NO _x	- 1 hour data	19
Figu	re 5: SO ₂	- 1 hour data	20
Figu	re 6: H₂S	- 1 hour data	20
Figu	re 7: BTX	- 1 hour data	21

Report No: DAT10380

Peabody Energy

List of Tables

Table 1: Wilpinjong Mine monitoring site location	7
Table 2: Parameters measured at the Wilpinjong Mine monitoring station	9
Table 3: Methods	10
Table 4: Wilpinjong Air Quality Goals (NEPM)	13
Table 5: Exceedences Recorded	13
Table 6: Units and Uncertainties	14
Table 7: Automatic checks for NO, NO ₂ , NO _x , SO ₂ , and H ₂ S	15
Table 8: Wilpinjong Wollar Maintenance Table	16
Table 9: Data Capture for Wilpinjong Wollar Station	17
Table 10: Wollar Valid Data Exception Table	22

Report No: DAT10380

Peabody Energy

1.0 Executive Summary

Peabody Energy has commissioned Ecotech P/L to conduct air quality monitoring for the Wilpinjong Mine at Wollar. Measured parameters at Wollar are NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene. A wind sensor is also installed at the Wollar site.

The Wollar station was commissioned in March 2013.

This report presents the data collected from the Wollar station for $1^{st} - 31^{st}$ December 2015. Data capture for the measured pollutants is presented in Table 9.

Report No: DAT10380

Peabody Energy

2.0 Introduction

Ecotech Pty Ltd was commissioned by Peabody Energy to provide monitoring and data reporting for the Wilpinjong Mine at Wollar, located as detailed in Table 1. Ecotech commenced data collection from the Wilpinjong Station on the 1st March 2013.

This report presents the data for $1^{st} - 31^{st}$ December 2015.

The data presented in this report:

- Describes air quality measurements;
- Compares monitoring results;
- Has been quality assured;
- Complies with NATA accreditation requirements, where applicable.

3.0 Monitoring and Data Collection

3.1. Siting Details

The Wilpinjong Mine consists of one ambient air quality monitoring station. The station location and siting details are described below.

Table 1: Wilpinjong Mine monitoring site location

Site Name	Geographical Coordinates	Height Above Sea Level (m)	
Wollar	Lat: -32.360105 Long: 149.949509	366	

Report No: DAT10380

Peabody Energy

A siting audit was conducted on 27th February 2015 to assess for compliance with *AS/NZS* 3580.1.1:2007 "Methods for sampling and analysis of ambient air – guide to siting air monitoring equipment".

This siting of this station complies with AS/NZS 3580.1.1:2007. The station is classified as a neighbourhood station according to *AS/NZS 3580.1.1:2007*.

Figure 1: Wilpinjong Mine Monitoring Station Location

Report No: DAT10380

Peabody Energy

3.2. Monitored Parameters

Table 2 below details the parameters monitored and the instruments used at Wilpinjong Mine monitoring station. Appendix 1 defines any abbreviated parameter names used throughout the report.

For meteorological sensors, the elevation given in the table below is the height above ground level at the monitoring station.

Table 2: Parameters measured at the Wilpinjong Mine monitoring station

Parameter Measured	Instrument and Measurement Technique		
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 - Gas Chromatography		
H₂S	Ecotech EC9852 - fluorescence		
NO, NO ₂ , NO _x	Ecotech EC9841 gas phase chemiluminescence		
SO ₂	Ecotech EC9850 – fluorescence		
Wind Speed (horizontal, 10m)	Vaisala WS425 – ultrasonic		
Wind Direction (10m)	Vaisala WS425 – ultrasonic		

Report No: DAT10380

Peabody Energy

3.3. Data Collection Methods

Table 3 below shows the methods used for data collection. Any deviations from the stated methods are detailed in section 3.3.1.

Table 3: Methods

Parameter Measured	Data Collection Methods Used	Description of Method
NO, NO ₂ , NO _x	AS 3580.5.1-2011	Methods for sampling and analysis of ambient air. Method 5.1: Determination of oxides of nitrogen – chemiluminescence method
	Ecotech Laboratory Manual	In-house method 6.1 Oxides of nitrogen by chemiluminescence
SO ₂	AS 3580.4.1-2008	Methods for sampling and analysis of ambient air. Method 4.1: Determination of sulfur dioxide – Direct reading instrumental method
302	Ecotech Laboratory Manual	In-house method 6.2 Sulfur dioxide by fluorescence
H₂S	Ecotech Laboratory Manual	In-house method 6.5 Hydrogen sulfide by fluorescence
BTX (Benzene, Toluene and <i>p</i> -Xylene)	Synspec GC955 Series Manual	Synspec GC955 - Gas Chromatography
Vector Wind Speed	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
(Horizontal)	Ecotech Laboratory Manual	In-house method 8.1 Wind speed (Horizontal) by anemometer
Vector Wind	AS 3580.14-2014	Methods for sampling and analysis of ambient air. Method 14: Meteorological monitoring for ambient air quality monitoring applications
Direction	Ecotech Laboratory Manual	In-house method 8.3 Wind direction by anemometer

Report No: DAT10380

Peabody Energy

3.3.1. Compliance with Standards

Unless stated below, parameters are monitored at the Wilpinjong Mine site according to the methods detailed in Table 3 above.

- Measurement of benzene, toluene and p-xylene (BTX) is not covered by Ecotech's NATA scope of accreditation.
- Measurement of hydrogen sulfide (H₂S) is not covered by Ecotech's scope of accreditation due to the frequency of calibration checks.

3.3.2. Data Acquisition

Data acquisition is performed using a PC based WinAQMS logger (using WinAQMS® Version 2.0) situated at the monitoring site. Each logger is equipped with a 3G modem for remote data collection. The recorded data is remotely collected from the AQMS logger on a daily basis (using AirodisTM version 5.1) and stored at Ecotech's Environmental Reporting Services (ERS) department in Melbourne, Australia. Data samples are logged in 5 minute intervals.

3.4. Data Validation and Reporting

3.4.1. Validation

The Ecotech ERS department performs daily data checks to ensure maximum data capture rates are maintained. Any equipment failures are communicated to the responsible field engineers for urgent rectification. Ecotech ERS maintains two distinct databases containing non-validated and validated data respectively.

The validated database is created by duplicating the non-validated database and then flagging data affected by instrument faults, calibrations and other maintenance activities. The data validation software requires the analyst to supply a valid reason (e.g. backed by maintenance notes, calibration sheets etc.) in the database for flagging any data as invalid.

Details of all invalid or missing data are recorded in the Valid Data Exception Tables.

Report No: DAT10380

Peabody Energy

Validation is performed by the analyst, and the validation is reviewed. Graphs and tables are generated based on the validated five minute data.

3.4.2. Reporting

The reported data is in a Microsoft Excel format file named "Wilpinjong Coal Validated Data Report Dec-15.xls". The Excel file consists of 5 Excel worksheets:

- 1. Cover
- 2. 5 Minute Averages
- 3. Hourly Averages
- 4. Daily Averages
- 5. Valid Data Exception Table

The data contained in this report is based on Australian Eastern Standard Time.

All averages are calculated from the five minute data. Averages are based on a minimum of 75% valid readings within the averaging period.

Averaging periods of eight hours or less are reported for the end of the period, i.e. the hourly average 02:00 is for the data collected from 01:00 to 02:00. One hour averages are calculated based on a clock hour. One day averages are calculated based on calendar days.

Report No: DAT10380

Peabody Energy

4.0 Air Quality Goals

The air quality goals for pollutants monitored at the Wilpinjong Wollar monitoring station are based on the Australian National Environmental Council (NEPC) Ambient Air Quality (NEPM). These air quality goals are shown in Table 4 below.

Table 4: Wilpinjong Air Quality Goals (NEPM)

Parameter	Time Period	Exceedence Level	Units	Maximum allowable exceedences
NO ₂	1 year	30	ppb	None
NO ₂	1 hour	120	ppb	1 day a year
SO ₂	1 hour	200	ppb	1 day a year
SO ₂	1 day	80	ppb	1 day a year
SO ₂	1 year	20	ppb	None

4.1. Air Quality Summary

Table 5 below, details any exceedences of the NEPM Standard that were observed during this reporting period.

Table 5: Exceedences Recorded

Parameter	Time Period	Value of Exceedence	Date of Exceedence
NO ₂	1 hour	-	-
SO ₂	1 hour	-	-
SO ₂	1 day	-	-

Report No: DAT10380

Peabody Energy

5.0 Calibrations and Maintenance

5.1. Units and Uncertainties

The uncertainties for each parameter have been determined by the manufacturer's tolerance limits of the equipment's parameters, and by the data collection standard method.

The reported uncertainties are expanded uncertainties, calculated using coverage factors which give a level of confidence of approximately 95%.

Table 6: Units and Uncertainties

Parameter	Units	Resolution	Uncertainty	Measurement Range ¹
NO, NO _x (EC9841)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
NO ₂ (EC9841)	ppm	1 ppb	± 16 ppb K factor of 2.01	0 ppb to 500 ppb
SO ₂ (EC9850)	ppm	1 ppb	± 14 ppb K factor of 2.01	0 ppb to 500 ppb
H₂S	ppm	1 ppb	15.2% of reading or ± 19 ppb, whichever is greater K factor of 2	0 ppb to 500 ppb
Benzene, Toluene and <i>p</i> - Xylene (BTX)	ppb	0.03 ppb	15.1% of reading or 3.8ppb, whichever is greater K factor of 2	0 ppb to 300 ppb
Vector Wind Speed	m/s	0.1 m/s	±0.22 m/s or 3.0% of reading, whichever is greater (K factor of 1.96)	0 m/s to 15 m/s
Vector Wind Direction	Deg	1 deg	±4 deg K factor of 2.11	0 deg to 360 deg Starting threshold: 0 m/s

 $^{^{1}}$ Uncertainties may not be calculated based on the full measurement range. Uncertainty for NO, NO₂ and NO_x by EC 9841 and SO₂ by EC9850 are calculated based on a measurement range of 0-125 ppb.

Report No: DAT10380

Peabody Energy

5.2. Automatic Checks

Automatic span and zero calibration checks run every second day for NO, NO₂, NO_x and SO₂.

Background checks run each night for SO₂ and H₂S.

See Table 7 below for additional details. Data points associated with these checks are invalidated but are not referred to in the Valid Data Exception Tables.

Table 7: Automatic checks for NO, NO₂, NO_x, SO₂, and H₂S

Parameter	Span / Zero cycle time (approximate)	Background cycle time (approximate)
NO, NO ₂ , NO _x	01:00 to 01:45 every 2 nd day	N/A
SO ₂	01:00 to 01:40	23:50 to 00:00
H₂S	Refer to VDET for details	23:50 to 00:05

5.3. Maintenance

Unscheduled maintenance was performed on 16/12/2015 and 29/12/2015; to confirm BTX offsets and run a zero check.

A further unscheduled visit was made on 21/12/2015; to investigate a low span fault for H_2S analyser. The H_2S scrubber replaced and suspected leak on the system fixed. Overnight zero/span for H_2S has changed to daily to make sure the problem has been completely rectified.

Monthly maintenance was performed over 2-days on 29/12/2015 and 13/12/2015 for all parameters, and included running a zero check on the BTX analyser, and an adjustment of offsets.

Report No: DAT10380

Peabody Energy

5.3.1. Calibration & Maintenance Summary Tables

The last calibrations for the following parameters were performed on the indicated dates. Data supplied after this time is subject to further validation, to be performed at the next calibration cycle.

Note: Maintenance and calibration dates may differ, as calibrations may be less frequent than scheduled maintenance visits.

Table 8 indicates when the gas and meteorological equipment was last maintained / calibrated.

Table 8: Wilpinjong Wollar Maintenance Table

Parameter	Date of Last Maintenance	Maintenance Type	Date of Last Calibration	Calibration Cycle
NO, NO ₂ , NO _x	29/12/2015	Monthly	29/12/2015	Monthly
SO ₂	29/12/2015	Monthly	29/12/2015	Monthly
H₂S	29/12/2015	Monthly	29/12/2015	Monthly
втх	29/12/2015	Monthly	29/12/2015	Monthly
Wind Speed	29/12/2015	Monthly	21/05/2015	2-Yearly
Wind Direction	29/12/2015	Monthly	21/05/2015	2-Yearly

Wind sensor calibration certificates not yet received, last calibration will be updated when available

Report No: DAT10380

Peabody Energy

6.0 Results

6.1. Data Capture

Data capture is based on 1 hour averages, calculated from 5 minute data, and refers to the amount of available data collected during the report period.

The percentage of data captured is calculated using the following equation:

Data capture = (Reported air quality data / Total data) x 100%

Where:

- Reported air quality data = Number of instrument readings which have been validated through a quality assured process and excludes all data errors, zero data collection due to calibration, failures and planned and unplanned maintenance.
- Total data = Total number of instrument readings since the start of the term assuming no maintenance, errors, loss of data or calibration.

Table 9 displays data capture statistics for $1^{st} - 31^{st}$ December 2015. **Bold** values in the table indicate data capture below 95%.

Details of all invalid or missing data affecting data affecting data capture are included in the Valid Data Exception Tables, and attached Excel file.

Table 9: Data Capture for Wilpinjong Wollar Station

Parameter	Data Capture %
NO, NO ₂ , NO _x	98.2
SO ₂	97.8
H₂S	95.0
Benzene	97.9
Toluene	97.8
<i>p</i> -Xylene	97.8
WS, WD	62.5

Report No: DAT10380

Peabody Energy

6.2. Graphic Representations

Validated 5 minute data for NO, NO₂, NO_x, SO₂, H₂S, Benzene, Toluene and p-Xylene were used to construct the following graphical representations.

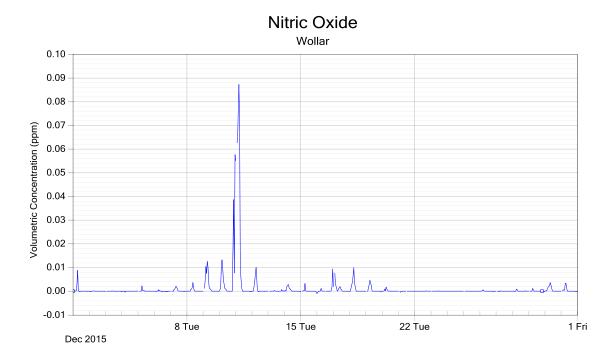


Figure 2: NO - 1 hour data

Report No: DAT10380

Peabody Energy

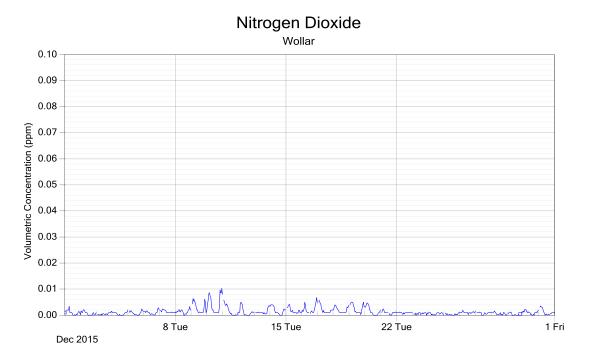


Figure 3: NO₂ - 1 hour data

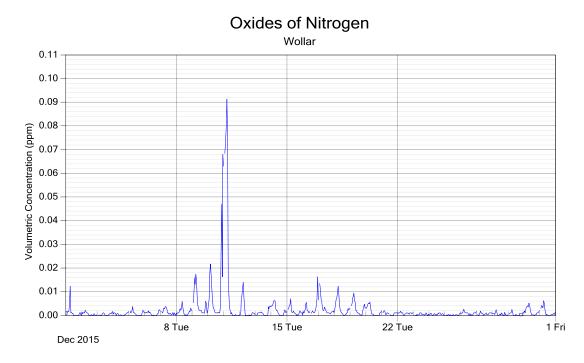


Figure 4: NO_X - 1 hour data

Report No: DAT10380

Peabody Energy

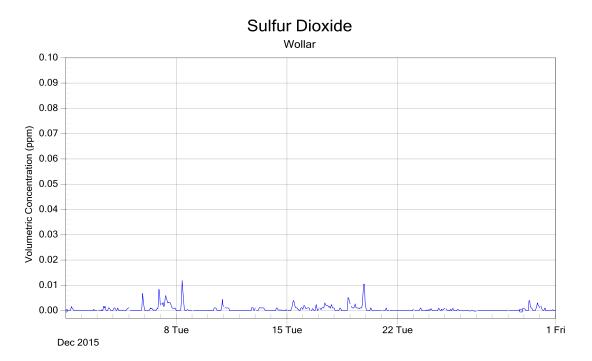


Figure 5: SO₂ - 1 hour data

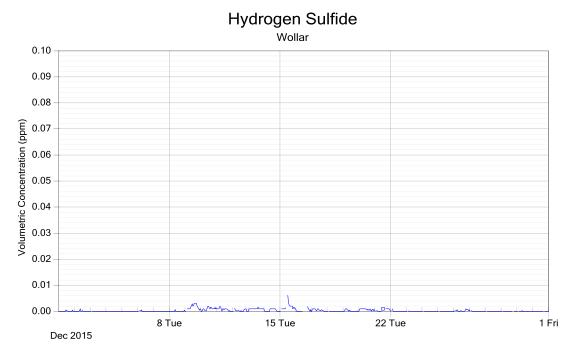


Figure 6: H₂S - 1 hour data

Report No: DAT10380

Peabody Energy

Benzene, Toluene and p-Xylene

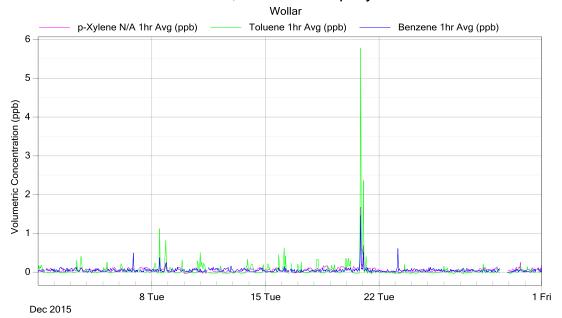


Figure 7: BTX - 1 hour data

Report No: DAT10380

Peabody Energy

7.0 Valid Data Exception Tables

The tables below details all changes made to the raw data set during the validation process. An explanation of reasons given in the table can be found in Appendix 2.

Table 10: Wollar Valid Data Exception Table

Start Date	End Date	Reason	Change Details	User Name	Change Date
1/12/2015 10:45	1/12/2015 11:10	Power interruption and instrument stabilisation	BTX, WS, WD, sigma, H ₂ S, SO ₂	EP	27/01/2016
6/12/2015 2:55	18/12/2015 1:40	Due to the absence of automatic span checks for more than 5 days, data does not comply with Australian Standard. Data included for reference only	H₂S	EP	27/01/2016
7/12/2015 4:55	7/12/2015 5:25	Power interruption and instrument stabilisation	BTX, WS, WD, sigma, H ₂ S, SO ₂	EP	27/01/2016
10/12/2015 6:05	27/12/2015 15:25	Intermittent instrument fault	WS, WD, Sigma	EP	27/01/2016
11/12/2015 11:25	11/12/2015 11:55	Power interruption and instrument stabilisation	BTX, WS, WD, sigma, H ₂ S, SO ₂	EP	27/01/2016
16/12/2015 11:25	16/12/2015 17:20	Non-scheduled maintenance, calibration	BTX, NO, NO ₂ , NO _x , H ₂ S, SO ₂	EP	27/01/2016
16/12/2015 13:15	31/12/2015 16:55	Static offset of 0.05 ppb applied to correct baseline	<i>p</i> -Xylene	EP	27/01/2016
21/12/2015 11:15	21/12/2015 13:05	Non-scheduled maintenance, calibration	NO, NO ₂ , NO _x , H ₂ S, SO ₂	EP	27/01/2016
23/12/2015 14:10	1/01/2016 0:00	Intermittent zero check performed	ВТХ	EP	27/01/2016
29/12/2015 10:50	29/12/2015 22:55	Scheduled monthly maintenance and instrument stabilisation	втх	EP	27/01/2016

Report No: DAT10380

Peabody Energy

Start Date	End Date	Reason	Change Details	User Name	Change Date
29/12/2015 18:15	29/12/2015 21:55	Scheduled monthly maintenance and instrument stabilisation	WS, WD, sigma, NO, NO ₂ , NO _x , H ₂ S, SO ₂	EP	27/01/2016
29/12/2015 22:20	31/12/2015 16:55	Static offset of 0.03 ppb applied to correct baseline	Toluene	EP	27/01/2016
31/12/2015 17:00	31/12/2015 17:35	Power interruption and instrument stabilisation	BTX, WS, WD, sigma, H ₂ S, SO ₂	EP	27/01/2016
31/12/2015 17:40	1/01/2016 0:00	Static offset of - 0.2 ppb applied to correct baseline (continues into Jan-16)	<i>p</i> -Xylene	EP	27/01/2016

8.0 Report Summary

The data capture for Wollar was above 95% for all measured parameters, with the exception of wind data;

• Data capture for WS and WD was 62.5% and this was impacted by an instrument fault.

Measurement of a number of parameters in this report does not comply with applicable standards and/or is not covered by Ecotech's NATA scope of accreditation. Please refer to section 3.3.1 for details.

END OF REPORT
LIND OF INCLUDIN

Report No: DAT10380

Peabody Energy

Appendix 1 - Definitions & Abbreviations

BTX Benzene, Toluene and *p*-Xylene

H₂S Hydrogen sulfide

m/s Metres per second

NO Nitric oxide

NO₂ Nitrogen dioxide

NO_x Oxides of nitrogen

ppb Parts per billion

SO₂ Sulphur dioxide

WD Vector Wind Direction

WS Vector Wind Speed